leetcode004:寻找两个正序数组的中位数_二分法
leetcode04
视频讲解B站地址: https://www.bilibili.com/video/BV1hk4y1B74M/
题目
给定两个大小为 m 和 n 的正序(从小到大)数组 nums1
和 nums2
。
请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1
和 nums2
不会同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
思路
暴力思路: 将两个数组先合并,再求中位数
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
nums = sorted(nums1+nums2)
num_count = len(nums)
if num_count%2==1:
return nums[int((num_count-1)/2)]
else:
return (nums[int(num_count/2)-1] + nums[int(num_count/2)])/2
时间复杂度: O((m+n)log(m+n))
空间复杂度: O(m+n)
暴力思路2: 将所有元素分为两部分
将nums1
和nums2
两个数组各自分为较小的一半和较大的一半.然后将每个数组的两部分各自组合,若两部分正好能将整个集合二分,则中位数必然产生于两个数组各自的分割点附近.
我们希望,有x2<=y6
且y5<=x3
时,中位数发生于x2
,x3
,y5
,y6
之间,根据总元素数目:
- 若
len(nums1)+len(nums2)
为偶数,则中位数为avg(max(x2,y5)+min(x3,y6))
. - 若
len(nums1)+len(nums2)
为奇数,则中位数为max(x2,y5)
.
尝试次数 | 1 | 2 | 3 | 4 |
---|---|---|---|---|
造型 |
有两个问题:
-
partition1
和partition2
之间满足什么约束条件? -
如何寻找
partition1
和partition2
? -
边界情况: 若
partition
分割点正好为数组的首或尾时怎么办?
解:
-
partition1+partition2 == (len(nums1)+len(nums2)+1)/2
:- 若
len1=6
,len2=8
(总长度为偶数),则partition1+partition2=7
. - 若
len1=6
,len2=7
(总长度为奇数),则partition1+partition2=7
.
- 若
-
将
partition1
在较短的数组上滑动,根据partition1
与partition2
的约束关系,求出partition2
.为什么
partition1
要在较短的数组上滑动?为了partition2
永远能取到值.- 考虑一个极端的情况,在下图中,若根据
nums2
上的partition1
为6
时,nums1
上的partition2
的取值应该是多少? - 若根据长数组上的分割点来确定短数组上的分割点,必然带来类似问题: 长数组上的分割点取到某值时,短数组上取不到对应的分割点,这给长数组的遍历带来了麻烦.
- 考虑一个极端的情况,在下图中,若根据
-
边界条件: 若分割点取到了数组的首或尾时怎么办
根据数组的有序性在数组两侧添加虚拟的
-∞
和+∞
.(不需要物理添加,只需要逻辑上添加)在实际编程中,我们可以通过
min
,max
运算确保添加入数组的-∞
和+∞
不会真正地参与到中位数的产生过程中.
代码
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
// 必须在较小的数组上尝试partition1的取值,因此对两个数组进行交换
if (nums1.length > nums2.length) {
return findMedianSortedArrays(nums2, nums1);
}
int len1 = nums1.length;
int len2 = nums2.length;
for (int partition1 = 0; partition1 <= len1; partition1++) {
// partition1在数组nums1上滑动, 根据partition1求出partition2
int partition2 = (len1 + len2 + 1) / 2 - partition1;
// 分别求出两个分割位置左右的值
int maxLeft1 = (partition1 == 0) ? Integer.MIN_VALUE : nums1[partition1 - 1];
int minRight1 = (partition1 == len1) ? Integer.MAX_VALUE : nums1[partition1];
int maxLeft2 = (partition2 == 0) ? Integer.MIN_VALUE : nums2[partition2 - 1];
int minRight2 = (partition2 == len2) ? Integer.MAX_VALUE : nums2[partition2];
// 若找到满足条件的分割方式,则求解中位数
if (maxLeft1 <= minRight2 && maxLeft2 <= minRight1) {
if ((len1 + len2) % 2 == 0) {
return ((double) Math.max(maxLeft1, maxLeft2) + Math.min(minRight1, minRight2)) / 2;
} else {
return (double) Math.max(maxLeft1, maxLeft2);
}
}
}
throw new IllegalArgumentException();
}
public static void main(String[] args) {
int[] nums1 = {1, 3, 8, 9, 15};
int[] nums2 = {7, 11, 19, 21, 23, 25};
Solution solution = new Solution();
System.out.println(solution.findMedianSortedArrays(nums1, nums2));
}
}
时间复杂度: O(min(m,n))
空间复杂度: O(1)
二分法: 借助数组的有序性,减少尝试次数
数组有序性→二分法,这道题可以通过二分法来减小时间复杂度,具体来说,减少求取partition1
的次数.
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
if (nums1.length > nums2.length) {
return findMedianSortedArrays(nums2, nums1);
}
int len1 = nums1.length;
int len2 = nums2.length;
// 分别定义了partition1取值的上下限
int low = 0;
int high = nums1.length;
while (low <= high) {
int partition1 = (low + high) / 2;
int partition2 = (len1 + len2 + 1) / 2 - partition1;
int maxLeft1 = (partition1 == 0) ? Integer.MIN_VALUE : nums1[partition1 - 1];
int minRight1 = (partition1 == len1) ? Integer.MAX_VALUE : nums1[partition1];
int maxLeft2 = (partition2 == 0) ? Integer.MIN_VALUE : nums2[partition2 - 1];
int minRight2 = (partition2 == len2) ? Integer.MAX_VALUE : nums2[partition2];
if (maxLeft1 <= minRight2 && maxLeft2 <= minRight1) {
// 若找到符合条件的分割,则直接返回
if ((len1 + len2) % 2 == 0) {
return ((double) Math.max(maxLeft1, maxLeft2) + Math.min(minRight1, minRight2)) / 2;
} else {
return (double) Math.max(maxLeft1, maxLeft2);
}
} else if (maxLeft1 > minRight2) {
// partiton1太靠右了,将区间向左倾斜
high = partition1 - 1;
} else {
// partition1太靠左了,将区间向右倾斜
low = partition1 + 1;
}
}
throw new IllegalArgumentException();
}
public static void main(String[] args) {
int[] nums1 = {1, 3, 8, 9, 15};
int[] nums2 = {7, 11, 19, 21, 23, 25};
Solution solution = new Solution();
System.out.println(solution.findMedianSortedArrays(nums1, nums2));
}
}
import math
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
if len(nums1) > len(nums2):
return self.findMedianSortedArrays(nums2, nums1)
left = 0
right = len(nums1)
sum_partition = int((len(nums1) + len(nums2)) / 2)
while (left <= right):
partition1 = int((left + right) / 2)
partition2 = sum_partition - partition1
left1 = -math.inf if partition1 == 0 else nums1[partition1-1]
right1 = math.inf if partition1 == len(nums1) else nums1[partition1]
left2 = -math.inf if partition2 == 0 else nums2[partition2-1]
right2 = math.inf if partition2 == len(nums2) else nums2[partition2]
if left1<=right2 and left2<=right1:
if (len(nums1)+len(nums2))%2 == 1:
return min(right1, right2)
else:
return (max(left1, left2) + min(right1, right2)) / 2
elif left2>right1:
left = partition1 + 1
else:
right = partition1 - 1
raise RuntimeError("程序出错")
时间复杂度: O(log(min(m,n)))
空间复杂度: O(1)