leetcode004:寻找两个正序数组的中位数_二分法

leetcode04

视频讲解B站地址: https://www.bilibili.com/video/BV1hk4y1B74M/

题目

4. 寻找两个正序数组的中位数

给定两个大小为 m 和 n 的正序(从小到大)数组 nums1nums2

请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。

你可以假设 nums1nums2 不会同时为空。

示例 1:

nums1 = [1, 3]
nums2 = [2]

则中位数是 2.0

示例 2:

nums1 = [1, 2]
nums2 = [3, 4]

则中位数是 (2 + 3)/2 = 2.5

思路

暴力思路: 将两个数组先合并,再求中位数

class Solution:
    def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
        nums = sorted(nums1+nums2)
        num_count = len(nums)
        
        if num_count%2==1:
            return nums[int((num_count-1)/2)]
        else:
            return (nums[int(num_count/2)-1] + nums[int(num_count/2)])/2

时间复杂度: O((m+n)log(m+n))
空间复杂度: O(m+n)

暴力思路2: 将所有元素分为两部分

nums1nums2两个数组各自分为较小的一半较大的一半.然后将每个数组的两部分各自组合,若两部分正好能将整个集合二分,则中位数必然产生于两个数组各自的分割点附近.

在这里插入图片描述

在这里插入图片描述

我们希望,有x2<=y6y5<=x3时,中位数发生于x2,x3,y5,y6之间,根据总元素数目:

  • len(nums1)+len(nums2)为偶数,则中位数为avg(max(x2,y5)+min(x3,y6)).
  • len(nums1)+len(nums2)为奇数,则中位数为max(x2,y5).
尝试次数1234
造型在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

有两个问题:

  1. partition1partition2之间满足什么约束条件?

  2. 如何寻找partition1partition2?

  3. 边界情况: 若partition分割点正好为数组的首或尾时怎么办?

解:

  1. partition1+partition2 == (len(nums1)+len(nums2)+1)/2:

    • len1=6,len2=8(总长度为偶数),则partition1+partition2=7.
    • len1=6,len2=7(总长度为奇数),则partition1+partition2=7.

    在这里插入图片描述

  2. partition1在较短的数组上滑动,根据partition1partition2的约束关系,求出partition2.

    为什么partition1要在较短的数组上滑动?为了partition2永远能取到值.

    • 考虑一个极端的情况,在下图中,若根据nums2上的partition16时,nums1上的partition2的取值应该是多少?
    • 若根据长数组上的分割点来确定短数组上的分割点,必然带来类似问题: 长数组上的分割点取到某值时,短数组上取不到对应的分割点,这给长数组的遍历带来了麻烦.

    在这里插入图片描述

  3. 边界条件: 若分割点取到了数组的首或尾时怎么办

    根据数组的有序性在数组两侧添加虚拟的-∞+∞.(不需要物理添加,只需要逻辑上添加)

    在这里插入图片描述

    在实际编程中,我们可以通过min,max运算确保添加入数组的-∞+∞不会真正地参与到中位数的产生过程中.

代码

class Solution {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
		// 必须在较小的数组上尝试partition1的取值,因此对两个数组进行交换
        if (nums1.length > nums2.length) {
            return findMedianSortedArrays(nums2, nums1);
        }

        int len1 = nums1.length;
        int len2 = nums2.length;

        for (int partition1 = 0; partition1 <= len1; partition1++) {
			// partition1在数组nums1上滑动, 根据partition1求出partition2
            int partition2 = (len1 + len2 + 1) / 2 - partition1;

            // 分别求出两个分割位置左右的值
            int maxLeft1 = (partition1 == 0) ? Integer.MIN_VALUE : nums1[partition1 - 1];
            int minRight1 = (partition1 == len1) ? Integer.MAX_VALUE : nums1[partition1];

            int maxLeft2 = (partition2 == 0) ? Integer.MIN_VALUE : nums2[partition2 - 1];
            int minRight2 = (partition2 == len2) ? Integer.MAX_VALUE : nums2[partition2];

			// 若找到满足条件的分割方式,则求解中位数
            if (maxLeft1 <= minRight2 && maxLeft2 <= minRight1) {
                if ((len1 + len2) % 2 == 0) {
                    return ((double) Math.max(maxLeft1, maxLeft2) + Math.min(minRight1, minRight2)) / 2;
                } else {
                    return (double) Math.max(maxLeft1, maxLeft2);
                }
            }
        }

        throw new IllegalArgumentException();
    }

    public static void main(String[] args) {
        int[] nums1 = {1, 3, 8, 9, 15};
        int[] nums2 = {7, 11, 19, 21, 23, 25};

        Solution solution = new Solution();
        System.out.println(solution.findMedianSortedArrays(nums1, nums2));
    }
}

时间复杂度: O(min(m,n))
空间复杂度: O(1)

二分法: 借助数组的有序性,减少尝试次数

数组有序性→二分法,这道题可以通过二分法来减小时间复杂度,具体来说,减少求取partition1的次数.

在这里插入图片描述

class Solution {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {

        if (nums1.length > nums2.length) {
            return findMedianSortedArrays(nums2, nums1);
        }

        int len1 = nums1.length;
        int len2 = nums2.length;
		
        // 分别定义了partition1取值的上下限
        int low = 0;
        int high = nums1.length;

        while (low <= high) {

            int partition1 = (low + high) / 2;
            int partition2 = (len1 + len2 + 1) / 2 - partition1;

            int maxLeft1 = (partition1 == 0) ? Integer.MIN_VALUE : nums1[partition1 - 1];
            int minRight1 = (partition1 == len1) ? Integer.MAX_VALUE : nums1[partition1];

            int maxLeft2 = (partition2 == 0) ? Integer.MIN_VALUE : nums2[partition2 - 1];
            int minRight2 = (partition2 == len2) ? Integer.MAX_VALUE : nums2[partition2];
			
            if (maxLeft1 <= minRight2 && maxLeft2 <= minRight1) {
                // 若找到符合条件的分割,则直接返回
                if ((len1 + len2) % 2 == 0) {
                    return ((double) Math.max(maxLeft1, maxLeft2) + Math.min(minRight1, minRight2)) / 2;
                } else {
                    return (double) Math.max(maxLeft1, maxLeft2);
                }
            } else if (maxLeft1 > minRight2) {
            	// partiton1太靠右了,将区间向左倾斜
                high = partition1 - 1;
            } else {
                // partition1太靠左了,将区间向右倾斜
                low = partition1 + 1;
            }
        }
        
        throw new IllegalArgumentException();
    }

    public static void main(String[] args) {
        int[] nums1 = {1, 3, 8, 9, 15};
        int[] nums2 = {7, 11, 19, 21, 23, 25};

        Solution solution = new Solution();
        System.out.println(solution.findMedianSortedArrays(nums1, nums2));
    }
}
import math

class Solution:
    def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
        if len(nums1) > len(nums2):
            return self.findMedianSortedArrays(nums2, nums1)

        left = 0
        right = len(nums1)
        sum_partition = int((len(nums1) + len(nums2)) / 2)

        while (left <= right):
            partition1 = int((left + right) / 2)
            partition2 = sum_partition - partition1

            left1 = -math.inf if partition1 == 0 else nums1[partition1-1] 
            right1 = math.inf if partition1 == len(nums1) else nums1[partition1] 
            left2 = -math.inf if partition2 == 0 else nums2[partition2-1] 
            right2 = math.inf if partition2 == len(nums2) else nums2[partition2]

            if left1<=right2 and left2<=right1:
                if (len(nums1)+len(nums2))%2 == 1:
                    return min(right1, right2)
                else:
                    return (max(left1, left2) + min(right1, right2)) / 2
            elif left2>right1:
                left = partition1 + 1
            else:
                right = partition1 - 1

        raise RuntimeError("程序出错")

时间复杂度: O(log(min(m,n)))
空间复杂度: O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值