常见的排序算法
一、冒泡排序
冒泡排序(BubbleSort)的基本概念是:依次比较相邻的两个数,将小数放在前面,大数放在后面。即在第一趟:首先比较第1个和第2个数,将小数放前,大数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此继续,直至比较最后两个数,将小数放前,大数放后。至此第一趟结束,将最大的数放到了最后。在第二趟:仍从第一对数开始比较(因为可能由于第2个数和第3个数的交换,使得第1个数不再小于第2个数),将小数放前,大数放后,一直比较到倒数第二个数(倒数第一的位置上已经是最大的),第二趟结束,在倒数第二的位置上得到一个新的最大数(其实在整个数列中是第二大的数)。如此下去,重复以上过程,直至某一趟的交换顺序为0,最终完成排序。
例如对10,-3,5,34,-34,5,0,9进行排序
第一趟:-3,5,10,-34,5,0,9,34
第二趟:-3,5,-34,5,0,9,10,34
第三趟:-3,-34,5,5,0,9,10,34
第四趟:-34,-3,5,0,5,9,10,34
第五趟:-34,-3,0,5,5,9,10,34
import junit.framework.TestCase;
public class BubbleSort extends TestCase {
public void sort(Integer a[]) {
boolean exchange = false; // 某一趟的交换次数为0
for (int i = a.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
if (a[j + 1] < a[j]) {
exchange = true;
Integer temp = a[j + 1];
a[j + 1] = a[j];
a[j] = temp;
}
}
if (!exchange) { //如果本趟排序次数为0,表示排序次数为0
break;
}
}
}
public void test() {
Integer a[] = {10,-3,5,34,-34,5,0,9 };
sort(a);
for (int i = 0; i < a.length; i++) {
System.out.print(a[i] + "、");
}
}
}
二、选择排序
每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。选择排序是不稳定的排序方法。
初始 [49 38 65 97 76 13 27 49]
第一趟排序后 13 [38 65 97 76 49 27 49]
第二趟排序后 13 27 [65 97 76 49 38 49]
第三趟排序后 13 27 38 [97 76 49 65 49]
第四趟排序后 13 27 38 49 [76 97 65 49]
第五趟排序后 13 27 38 49 49 [97 65 76]
第六趟排序后 13 27 38 49 49 65 [97 76]
第七趟排序后 13 27 38 49 49 65 76 [97]
最后排序结果 13 27 38 49 49 65 76 97
import junit.framework.TestCase;
public class CollectSort extends TestCase {
// 选择排序
public void sort(Integer a[]) {
int min;
int temp;
for (int i = 0; i < a.length - 1; i++) {
min = i; // 本次排序最小的
for (int j = i + 1; j < a.length; j++) {
if (a[j] < a[min]) {
min = j;
}
}
if (min != i) {
temp = a[min];
a[min] = a[i];
a[i] = temp;
}
}
}
public void test() {
Integer array[] = { 49, 38, 65, 97, 76, 13, 27, 49 };
sort(array);
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");
}
}
}
三、快速排序
快速排序它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
public class QuickSort {
public static void sort(Comparable[] data, int low, int high) {
// 枢纽元,一般以第一个元素为基准进行划分
int i = low;
int j = high;
if (low < high) {
// 从数组两端交替地向中间扫描
Comparable pivotKey = data[low];
// 进行扫描的指针i,j;i从左边开始,j从右边开始
while (i < j) {
while (i < j && data[j].compareTo(pivotKey) > 0) {
j--;
}// end while
if (i < j) {
// 比枢纽元素小的移动到左边
data[i] = data[j];
i++;
}// end if
while (i < j && data[i].compareTo(pivotKey) < 0) {
i++;
}// end while
if (i < j) {
// 比枢纽元素大的移动到右边
data[j] = data[i];
j--;
}// end if
}// end while
// 枢纽元素移动到正确位置
data[i] = pivotKey;
// 前半个子表递归排序
sort(data, low, i - 1);
// 后半个子表递归排序
sort(data, i + 1, high);
}// end if
}// end sort
public static void main(String[] args) {
// 在JDK1.5版本以上,基本数据类型可以自动装箱
// int,double等基本类型的包装类已实现了Comparable接口
Comparable[] c = { 49 ,38, 65, 97, 76, 13, 27 };
sort(c, 0, c.length - 1);
for (Comparable data : c) {
System.out.println(data);
}
}
}
四、直接插入排序
插入排序(insert sorting)思想:当插入第i个元素时,前面的v[0],v[1],v[2]......v[i-1],已经排好序了.这时用v[i]的插入码与v[i-1],v[i-2],......排序码进行比较,找到插入的位置即插入v[i],原来位置上的元素从后向前依次后移。
第一趟比较前两个数,然后把第二个数按大小插入到有序表中; 第二趟把第三个数据与前两个数从前向后扫描,把第三个数按大小插入到有序表中;依次进行下去,进行了(n-1)趟扫描以后就完成了整个排序过程。
直接插入排序属于稳定的排序,最坏时间复杂性为O(n2),空间复杂度为O(1)。
例子
[46] 58 15 45 90 18 10 62
[15 46] 58 45 90 18 10 62
[15 45 46] 58 90 18 10 62
[15 45 46 58] 90 18 10 62
[15 18 45 46 58] 90 10 62
[10 15 18 45 46 58] 90 62
[10 15 18 45 46 58 62] 90
public class Straight_Insert_Sort {
public static void sort(Comparable array[]) {
int i, j;
Comparable temp;
for (i = 1; i < array.length; i++) {
temp = array[i];
for (j = 0; j < i; j++) {
if (array[j].compareTo(array[i]) > 0) {
for (int k = i; k > j; k--) {
array[k] = array[k - 1];
}
array[j] = temp;
break;
}
}
//以下的代码只是为了打印输出
System.out.print("[");
j = 0;
for (j = 0; j <= i - 1; j++) {
System.out.print(array[j] + " ");
}
System.out.print(array[i]);
System.out.print("] ");
for (j = i+1; j < array.length; j++) {
System.out.print(array[j] + " ");
}
System.out.println();
}
}
public static void main(String[] args) {
Integer array[] = { 46, 58, 15, 45, 90, 18, 10, 62 };
sort(array);
}
}
/*
[46 58] 15 45 90 18 10 62
[15 46 58] 45 90 18 10 62
[15 45 46 58] 90 18 10 62
[15 45 46 58 90] 18 10 62
[15 18 45 46 58 90] 10 62
[10 15 18 45 46 58 90] 62
[10 15 18 45 46 58 62 90]
*/