To The Max
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4437 Accepted Submission(s): 2099
Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
Source
可以根据最大子段,引申出来
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 50008
using namespace std;
int prim[N],numprim[N];
bool isnoprime[N];
int next;
void primm()
{
memset(isnoprime,0,sizeof(isnoprime));
next=0;
int i,j,k;
for(i=2;i<N;i++)
{
if(!isnoprime[i])
{prim[++next]=i;}
for(j=i+i;j<N;j++)
{
isnoprime[j]=1;
}
}
}
void DP()
{
memset(numprim,999999,sizeof(numprim));
numprim[0]=0;
numprim[1]=0;
int k;
for(int i=0;i<N;i++)
{
for(int j=1;j<=next&&(i+prim[j])<=N;j++)
{
numprim[i+prim[j]]=min(numprim[i+prim[j]],numprim[i]+1);
}
for(int j=1;j<=next&&i*prim[j]<=N;j++)
numprim[i*prim[j]]=min(numprim[i*prim[j]],numprim[i]+1);
}
}
int main()
{
int m;
scanf("%d",&m);
primm();
DP();
int a,b;
while(m--)
{
scanf("%d%d",&a,&b);
int sum=0;
for(int i=a;i<=b;i++)
sum+=numprim[i];
printf("%d\n",sum);
}
}