关于plt.pcolor的理解

plt.pcolor是画什么的,看下面这个就明白了
在这里插入图片描述
Z变量是一个二维矩阵,每个点都有一个值,pcolor就是以颜色的深浅把每个位置的值表示出来,直观地展示了原数组的数据大小分布。
参考文章

为我将将第二张图的画图方式改为pcolor,并模拟运行结果# -- coding: utf-8 -- """ Created on Thu Jun 1 17:06:08 2023 @author: Rayquaza """ import numpy as np import matplotlib.pyplot as plt def ricker(f, length, dt): t = np.arange(-length/2,(length-dt)/2, dt) y = (1.0 - 2.0*(np.pi2)(f2)(t2)) * np.exp(-(np.pi2)(f2)(t2)) return t,y Frequency = 20 length = 0.128 dt = 0.001 t0, w0 = ricker(Frequency, length, dt) rho = np.array([1.6, 2.4, 1.8]) v = np.array([2000, 3000, 2200]) x = np.arange(0, 500, 1) t = np.arange(0, 0.3, dt) Z = rho*v d_model = np.zeros((2, 500)) for i in range(500): d_model[0, i] = 200 if i < 50: d_model[1, i] = 200 elif i < 250 and i >= 50: d_model[1, i] = 200 + (i-50) elif i >=250: d_model[1, i] = 400 t1 = np.zeros((2, 500)) t1[0, :] = d_model[0,:] / v[1] for i in range(500): t1[1, i] = (d_model[1, i] - d_model[0, i]) / v[2] + t1[0, i] L = np.zeros(2) for i in range(2): L[i] = (Z[i+1] - Z[i]) / (Z[i+1] + Z[i]) L1 = np.zeros([300, 500]) for i in range(2): for j in range(500): if j < 50: L1[int(np.round(t1[i,j]/dt)),j] = (Z[2]-Z[0]) / (Z[2]+Z[0]) else: L1[int(np.round(t1[i,j]/dt)),j] = L[i] syn = np.zeros((300, 500)) for j in range(500): syn[: , j] = np.convolve(L1[:,j], w0, 'same') fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(18, 9)) axes[0].plot(w0, t0, 'b-') axes[0].xaxis.set_ticks_position('top') axes[0].invert_yaxis() axes[0].set_title("Amplitude", fontsize = 12) axes[0].set_ylabel("Time(s)",fontsize = 12) X, T = np.meshgrid(x, t) c = axes[1].contour(X, T, L1) axes[1].xaxis.set_ticks_position('top') axes[1].invert_yaxis() axes[1].set_title("Reflection Coefficient", fontsize = 12) axes[1].set_ylabel("Eight-Way Travel Time(s)",fontsize = 12) c_map = axes[2].pcolormesh(X, T, syn, cmap='bwr', shading='auto') axes[2].xaxis.set_ticks_position('top') axes[2].invert_yaxis() axes[2].set_xlabel("Amplitude", fontsize = 12) axes[2].set_ylabel("Two-Way Travel Time(s)",fontsize = 12) fig.colorbar(c_map, ax=axes[2]) fig.suptitle('Two-Layer Synthetic Seismogram', fontsize = 18) plt.tight_layout() plt.show()
06-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值