keras.layers.Conv1D中卷积核参数kernel_size的理解

我们知道二维卷积中kernel_size就是二维的,对应于感受野的大小,conv1d的kernel_size中只需要填一个数字,而不是二维的数组,是因为一维卷积的kernel_size默认为(kernel_size,你输入数据的列的维度)。
举例,输入维度为(xxx,40,7),conv1d(16, 3, input_shape=(40, 7))
那么输入数据进入卷积层后输出的维度为(xxx,40,16)
其实就相当于二维卷积,只不过卷积核(x,y)的y默认就是输入数据(xxx,x,y)的y。

参考:一维卷积实例
关于keras.layers.Conv1D的kernel_size参数使用介绍

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值