【基础知识】GAN 基本原理以及数学证明

转自:https://www.cnblogs.com/jeffersonqin/p/13671232.html

GAN概述

2014 年,Ian Goodfellow 和他在蒙特利尔大学的同事发表了一篇震撼学界的论文。没错,我说的就是《Generative Adversarial Nets》,这标志着生成对抗网络(GAN)的诞生,而这是通过对计算图和博弈论的创新性结合。他们的研究展示,给定充分的建模能力,两个博弈模型能够通过简单的反向传播(backpropagation)来协同训练。

这两个模型的角色定位十分鲜明。给定真实数据集 R,G 是生成器(generator),它的任务是生成能以假乱真的假数据;而 D 是判别器 (discriminator),它从真实数据集或者 G 那里获取数据, 然后做出判别真假的标记。Ian Goodfellow 的比喻是,G 就像一个赝品作坊,想要让做出来的东西尽可能接近真品,蒙混过关。而 D 就是文物鉴定专家,要能区分出真品和高仿(但在这个例子中,造假者 G 看不到原始数据,而只有 D 的鉴定结果——前者是在盲干)。

理想情况下,D 和 G 都会随着不断训练,做得越来越好——直到 G 基本上成为了一个“赝品制造大师”,而 D 因无法正确区分两种数据分布输给 G。

实践中,Ian Goodfellow 展示的这项技术在本质上是:G 能够对原始数据集进行一种无监督学习,找到以更低维度的方式(lower-dimensional manner)来表示数据的某种方法。而无监督学习之所以重要,就好像 Yann LeCun 的那句话:“无监督学习是蛋糕的糕体”。这句话中的蛋糕,指的是无数学者、开发者苦苦追寻的“真正的 AI”。

GAN - Generative Adversarial Nets, 生成对抗网络,简单来讲其有两个组成部分:

  • D (Discriminator) - 判别器,判断输入时捏造的还是真实的
  • G (Generator) - 生成器,从随机噪声中生成我们想要的数据

随着训练的进行,我们要提高D的辨析能力,但同时也要G的能力来骗过D,因为我们的最终目的是要让G来生成可以骗过D的信息。总结来说,通过对这两个模型的训练,我们就可以找到随机噪声与有意义数据的映射,达到创作的目的。

GAN的流程和目标函数

GAN的目标函数

GAN的目标函数如下:

                                 V(D, G) = \mathbb E_{x \sim P_{\text{data}} } [\log D(x)] + \mathbb E_{\boldsymbol {z} \sim P_z}[\log(1 - D(G(\boldsymbol {z})))]                           

其中,D为Discriminator的模型函数,G为Generator的模型函数,随机变量x服从数据集分布Pdata,随机变量(这里可能是高维随机变量,取决于模型具体实现)z服从分布Pz(生成噪音),E代表期望。

GAN的流程

                                                G^* = \arg \min _G \max _D V(D, G)

即,可以分为两步理解:

  1. 在G为常数的情况下,选择合适的D使得V(D,G)能够最大化。
  2. 在这之后,选取合适的G来最小化V(D,G),这个G就是我们想要的生成模型。

在每一步的训练中:

  • 取m个真实数据:\{x^{(1)}, x^{(2)}, x^{(3)}, \cdots, x^{(m)}\}
  • 使用G和m组随机数(服从于噪音分布PG,一般使用服从正态分布的随机数)\{\boldsymbol {z}^{(1)}, \boldsymbol {z}^{(2)}, \boldsymbol {z}^{(3)}, \cdots, \boldsymbol {z}^{(m)}\}
  • 生成m个假数据,其中    \forall i \in [1, m], i \in \mathbb Z \Rightarrow x^{(i)} \sim P_{\text{data}}, \boldsymbol {z} ^ {(i)} \sim P_z
  • 根据max部分的目标使用随机梯度上升(Stochastic Gradient Ascent)更新D的参数,提高D的分辨能力
  •   \theta_d := \theta_d + \alpha_d \nabla_{\theta_d} \frac 1 m \sum _ {i = 1} ^ m \Big [ \log D\big ( x^{(i)} \big) + \log \big ( 1 - D \big ( G(\boldsymbol{z}^{(i)}) \big ) \big ) \Big]
  • 根据min部分的目标使用随机梯度下降(Stochastic Gradient Descent)更新G的参数,使G生成的数据更有迷惑性
  •  \theta_g := \theta_g - \alpha_g\nabla_{\theta_g} \frac 1 m \sum _{i = 1} ^ m\log \Big ( 1 - D\big ( G(\boldsymbol{z} ^ {(i)})\big ) \Big )   

GAN的数学原理

Prerequisites

信息量(自信息)

信息量是指信息多少的量度,即,对于一条信息,传达这条信息所需的最少信息长度为自信息。

信息论创始人C.E.Shannon,1938年首次使用比特(bit)概念:1(bit)= \log_2 2。它相当于对二个可能结局所作的一次选择量。信息论采用对随机分布概率取对数的办法,解决了不定度的度量问题。

定义:符合分布P的某一事件x出现,传达出这条信息的信息量记为:I = \log \frac 1 {P(x)} = - \log P(x)

香农熵

从离散分布P中随机抽选一个事件,传达这条信息所需的最优平均信息长度为香农熵,表达为

                                                               H(P) = \sum_x P(x) \log \frac 1 {P(x)} = - \sum_x P(x) \log P(x)

若分布是连续的,则:

                                                                H(P) = \int_x P(x) \log \frac 1 {P(x)} \mathrm dx = -\int_x P(x) \log P(x) \mathrm dx

交叉熵

用分布P的最佳信息传递方式来传达分布Q中随机抽选的一个事件,所需的平均信息长度为交叉熵,表达为

                                                                 H_P(Q) = \sum_x Q(x) \log \frac 1 {P(x)} = - \sum_x Q(x) \log P(x)

                                                                 H_P(Q) = \int_x Q(x) \log \frac 1 {P(x)} \mathrm dx = - \int_x Q(x) \log P(x) \mathrm dx                        

KL Divergence

KL散度:用分布P的最佳信息传递方式来传达分布Q,比用分布Q自己的最佳信息传递方式来传达分布Q,平均多耗费的信息长度为KL散度,表达为D_P(Q)D_{KL}(Q||P),KL散度衡量了两个分布之间的差异。

                                                                  \begin{aligned} D_{KL}(Q||P) = D_P(Q) &= H_P(Q) - H(Q) \\ &= \sum_x Q(x) \log \frac 1 {P(x)} - \sum _x Q(x) \log \frac 1 {Q(x)} \\ &= \sum_x Q(x) \log \frac {Q(x)} {P(x)} \end{aligned}

对于连续分布:  D_{KL}(Q||P) = D_P(Q) = \int_{-\infty} ^ {\infty} P(x)\log \frac {P(x)}{Q(x)} \mathrm dx                                             

KL Divergence越大,两个分布差异越大,反之差异越小。

数学原理

看完Prerequisites,我们回归正题讨论GAN的原理。我们现在想要做的事情,其实就是将一个服从P_G的随机噪声z通过一个生成网络G得到一个和真实数据分布P_{\text {data}}(x)差不多的生成分布P_G(x;\theta_g),其中\theta_g为生成网络G的参数。我们希望找到一个\theta_g使得两个分布P_{\text {data}}(x)P_G(x;\theta_g)尽可能地相似(使得他们地KL散度尽可能得小)。

我们从真实数据分布P_{\text {data}}(x)中取m个样本,记作:

                                   \{x^{(1)}, x^{(2)}, x^{(3)}, \cdots, x^{(m)}\}

根据生成网络的参数\theta_g,我们可以计算出这m个真实样本在生成网络中出现的概率P_G(x^{(i)}; \theta_g),那么生成这样的m个样本数据的似然(likelihood)为:

                                       L = \prod_{i = 1} ^ m P_G(x^{(i)}; \theta_g)

由于我们想要两个分布尽量相似,那么我们肯定希望这个似然L尽量大,即生成这样的真实数据的概率尽量大,遂我们最大化这个似然,找到 \theta_g^*

                                       \begin{aligned} \theta_g^* &= \arg \max _ {\theta_g} \prod _ {i = 1} ^ m P_G(x^{(i)}; \theta_g) \\ &\Leftrightarrow \arg \max _ {\theta_g} \log \prod _ {i = 1} ^ m P_G(x^{(i)}; \theta_g) \\ &= \arg \max _ {\theta_g} \sum_{i = 1} ^ m \log P_G(x^{(i)}; \theta_g) \\ &\approx \arg \max _ {\theta_g} \mathbb E_{x \sim P_{\text {data}}} [\log P_G(x; \theta_g)] \\ &= \arg \max _ {\theta_g} \int _ x P_\text{data}(x) \log P_G(x; \theta_g)\mathrm dx \\ &= \arg \max _ {\theta_g} \int _ x P_\text{data}(x) \log P_G(x; \theta_g)\mathrm dx \\&~~~~- \int _ x P_\text{data}(x) \log P_\text {data}(x)\mathrm dx \\ &= \arg \max _ {\theta_g} \int _ x P_\text {data} (x) \log \frac {P_G(x; \theta_g)} {P_\text {data}(x)} \mathrm dx \\ &= \arg \max _ {\theta_g} - \int _ x P_\text {data} (x) \log \frac {P_\text {data}(x)} {P_G(x; \theta_g)} \mathrm dx \\ &= \arg \min _ {\theta_g} KL(P_\text {data} || P_G(x; \theta)) \end{aligned}

所以可见,其实最大化这个似然,和最小化KL散度是基本相同的。

上述式子中,P_G(x;\theta_g)代表在生成分布中出现x的概率,也可以如下计算得到:

                                              P_G(x) = \int _ z P_z(z)\cdot 1\{G(z) = x\} \mathrm dz

注:1⋅的含义是若打括号内的逻辑运算为真则取1,假则取0. 即

                                              1\{\text {True}\} = 1, 1 \{\text {False}\} = 0

但是我们发现,上述的过程是难以进行计算的,甚至完全没办法求P_G(x),这只是模型的想法而已。

现在我们看回之前我们提到的目标函数:

                                                 V(D, G) = \mathbb E_{x \sim P_{\text{data}} } [\log D(x)] + \mathbb E_{\boldsymbol {z} \sim P_z}[\log(1 - D(G(\boldsymbol {z})))]

与最优化生成模型:

                                                   G^* = \arg \min _G \max _D V(D, G)

我们接下来分步解释。

首先,我们不妨解释一下 \max_D V(G, D),这部分的含义之前也解释过,是在给定G的情况下,最大化V(G, D)。观察发现,其形式其实与交叉熵损失函数非常相似:

                                                      \mathcal L(\hat y, y) = -(y\log \hat y + (1 - y) \log (1 - \hat y))

其实他们表达的目的也差不多。我们先化简一下V(G, D)看看能得到什么结果:

                                   (带入了G(z)=x) 

让我们考察积分内部的项,我们可以对它做指数运算,即:

                                                e^{P_\text {data}(x) \log D(x) + P_G(x)\log (1 - D(x))} = D(x) ^ {P_\text {data}}\times(1- D(x))^{P_G(x)}

其想表达什么便不言而喻了,它表达的就是判别器判别是真的的正确率和判别是假的的正确率,总体来说就是衡量D的能力,所以我们想要最大化V,提高D的判别能力。

令:

                                                           f(D) = P_\text {data}(x) \log D(x) \mathrm dx + P_G(x)\log (1 - D(x))

因为这里P_{\text {data}}(x)P_G(x)都可以看作常数,所以

                                                                \arg \max _ D \int_x f(D) \mathrm dx = \arg \max _D f(D)           

最大化f(D),即令其导数为0:

                                                   \frac {\mathrm d f(D)} {\mathrm dD } = \frac {P_\text {data}(x)}{D} - \frac {P_G(x)} {1 - D} = 0

则:

                                                        \frac {P_\text {data}(x)}{D} = \frac {P_G(x)} {1 - D}

                                                      D^*(x) = \frac {P_\text {data}(x)}{P_\text {data}(x) + P_G(x)}

这样,我们就得到了那个状态下最优的D^*的表达式。我们将这个能够最大化V的D代入回V(G, D)

               \begin{aligned} \max V(G, D) &= V(G, D^*) \\ &= \mathbb E_{x \sim P_\text {data}} \Big [ \log \frac {P_\text {data}(x)}{P_\text {data}(x) + P_G(x)} \Big] + \mathbb E_{x \sim P_G} \Big [ \frac {P_G(x)}{P_\text {data}(x) + P_G(x)}\Big ] \\ &= \int_x P_\text {data} (x) \log \frac {\frac 1 2 P_\text {data}}{\frac 1 2 (P_\text{data}(x) + P_G(x))} \mathrm dx + \int _ x P_G(x) \log \frac {\frac 1 2 P_G(x)} {\frac 1 2 (P_\text {data} (x) + P_G(x))} \mathrm dx \\ &= -2\log 2 + D_{KL} (P_\text {data} || \frac 1 2 [P_\text{data}(x) + P_G(x)]) + D_{KL} (P_G(x) || \frac 1 2 [P_\text {data}(x) + P_G(x)]) \\ &= -2\log 2 + JSD (P_\text{data}(x) || P_G(x)) \end{aligned}

其中,我们引入了JS Divergence,定义如下:

                                            JSD(P||Q) = \frac 1 2 D_{KL} (P||M) + \frac 1 2 D_{KL} (Q || M), M = \frac 1 2 (P + Q)

 

容易得到,KL Divergence是不对称的,而JS Divergence是对称的。他们都可以衡量两组分布间的差异。这里我们想要两组分布差异最小,故取min

所以,这也就解释了为什么:

                                                                 \arg \min _G \max _D V(G, D)

是我们的目标过程。

 

 

 

 

 

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值