在类斐波那契数列问题中,我们常常需要运用构造一个矩阵连乘的方法来求解。
而在矩阵连乘中我们需要用到一个最基本的模板,快速幂矩阵。
与整数快速幂(整数快速幂传送门)相似,矩阵的快速幂也是用到不断减少幂的大小来实现
/*
* @Description:
* @Autor: Kadia
* @Date: 2020-08-03 12:07:27
* @LastEditors: Kadia
* @Connect: vx:ccz1354 qq:544692713
* @LastEditTime: 2020-08-03 21:38:52
*/
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
typedef long long ll;
using namespace std;
const int mod=1000000007;
ll power(ll x,int y,int mod){ll ans=1;while(y){if(y&1)ans=(ans*x)%mod;x=(x*x)%mod;y>>=1;}return ans%mod;}
ll power(ll x,int y){ll ans=1;while(y){if(y&1)ans*=x;x*=x;y>>=1;}return ans;}
typedef struct _matrix
{
ll a[105][105];
}matrix;
ll n,k;
matrix ans;
matrix matrixmul(matrix a,matrix b)
{
matrix c;
memset(c.a,0,sizeof(c.a));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
for(int k=1;k<=n;k++)
{
c.a[i][j]=(c.a[i][j]+(a.a[i][k]*b.a[k][j])%mod)%mod;
}
}
}
return c;
}
matrix matrixpower(matrix a,ll k)
{
for(int i=1;i<=n;i++)
ans.a[i][i]=1;
while(k)
{
if(k&1)
ans=matrixmul(ans,a);
a=matrixmul(a,a);
k>>=1;
}
return ans;
}
int main()
{
ios::sync_with_stdio(false);
cin >> n >> k;
matrix a;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
cin >> a.a[i][j];
}
}
matrixpower(a,k);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(j==1)
cout << ans.a[i][j];
else
cout << " " << ans.a[i][j];
}
cout << endl ;
}
return 0;
}