矩阵连乘-快速幂矩阵

在类斐波那契数列问题中,我们常常需要运用构造一个矩阵连乘的方法来求解。
而在矩阵连乘中我们需要用到一个最基本的模板,快速幂矩阵

与整数快速幂(整数快速幂传送门)相似,矩阵的快速幂也是用到不断减少幂的大小来实现

洛谷P3390

/*
 * @Description: 
 * @Autor: Kadia
 * @Date: 2020-08-03 12:07:27
 * @LastEditors: Kadia
 * @Connect: vx:ccz1354 qq:544692713
 * @LastEditTime: 2020-08-03 21:38:52
 */
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
typedef long long ll;
using namespace std;
const int mod=1000000007;
ll power(ll x,int y,int mod){ll ans=1;while(y){if(y&1)ans=(ans*x)%mod;x=(x*x)%mod;y>>=1;}return ans%mod;}
ll power(ll x,int y){ll ans=1;while(y){if(y&1)ans*=x;x*=x;y>>=1;}return ans;}
typedef struct _matrix
{
    ll a[105][105];
}matrix;
ll n,k;
matrix ans;
matrix matrixmul(matrix a,matrix b)
{
    matrix c;
    memset(c.a,0,sizeof(c.a));
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            for(int k=1;k<=n;k++)
            {
                c.a[i][j]=(c.a[i][j]+(a.a[i][k]*b.a[k][j])%mod)%mod;
            }
        }
    }
    return c;
}
matrix matrixpower(matrix a,ll k)
{
    for(int i=1;i<=n;i++)
        ans.a[i][i]=1;
    while(k)
    {
        if(k&1)
            ans=matrixmul(ans,a);
        a=matrixmul(a,a);
        k>>=1;
    }
    return ans;
}
int main()
{
    ios::sync_with_stdio(false);
    cin >> n >> k;
    matrix a;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            cin >> a.a[i][j];
        }
    }
    matrixpower(a,k);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if(j==1)
                cout << ans.a[i][j];
            else
                cout << " " << ans.a[i][j];
        }
        cout << endl ;
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值