orz commonc神犇做了一年的题
首先我们考虑假设已经确定了哪些小xrf走,哪些小xrf留下,那么我们考虑走的那些小矮人走的顺序
考虑x比y先走的条件,假设x和y是第一个和第二个走的,如果x比y先走,那么要求底下的人的高度加上Ax+Bx+Ay和By+Bx都能够到顶,如果y比x先走,那么要求底下的人的高度加上Ay+By+Ax和Ay+Ax都能够到顶,所以如果min(Ax+Ay,By)+Bx>min(Bx+By,Ay)+Ax,那么说明x先走需要的底下的人的高度更小,所以x先走
这个式子可以化简为Ax+Bx<Ay+By(代回去然后分类讨论就能证了)
按照这个式子排序然后DP,这样DP的时候先进行转移的人如果走的话一定比后进行转移的人先走,f[i]表示走了i个人之后底下最多还有多高,然后DP一下就好了
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<bitset>
using namespace std;
#define MAXN 2010
#define MAXM 100010
#define ll long long
#define INF 1000000000
#define MOD 1000000007
#define eps 1e-8
struct xrf{
int x;
int y;
friend bool operator <(xrf x,xrf y){
return x.x+x.y<y.x+y.y;
}
};
int n,h;
xrf a[MAXN];
int f[MAXM];
int main(){
int i,j;
scanf("%d",&n);
memset(f,0xef,sizeof(f));
f[0]=0;
for(i=1;i<=n;i++){
scanf("%d%d",&a[i].x,&a[i].y);
f[0]+=a[i].x;
}
scanf("%d",&h);
sort(a+1,a+n+1);
int ans=0;
for(i=1;i<=n;i++){
for(j=ans;~j;j--){
if(f[j]+a[i].y>=h){
f[j+1]=max(f[j+1],f[j]-a[i].x);
ans=max(ans,j+1);
}
}
}
printf("%d\n",ans);
return 0;
}
/*
2 1 1 2 2
*/