假设我们循环移动了x位,并另所有点都加了y,那么这时候的答案就是sigma (a[i+x]-b[i]+y)^2
把上式展开,发现除了一项-2*a[i+x]*b[i]外,要么是常数项,要么是关于y的一次函数,都可以预处理然后O(1)算
对于-2*a[i+x]*b[i],把b翻转,就是一个卷积的形式,FFT预处理即可
那么枚举所有可能的x和y,然后取最小值即可
#include<iostream>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<iomanip>
#include<cstdlib>
#include<cstdio>
#include<map>
#include<bitset>
#include<set>
#include<stack>
#include<vector>
#include<queue>
using namespace std;
#define MAXN 400010
#define MAXM 1010
#define ll long long
#define eps 1e-8
#define MOD 1000000007
#define INF 1000000000
const double pi=acos(-1);
struct cl{
double x;
double y;
cl(){
}
cl(double _x,double _y){
x=_x;
y=_y;
}
friend cl operator +(const cl &x,const cl &y){
return cl(x.x+y.x,x.y+y.y);
}
friend cl operator -(const cl &x,const cl &y){
return cl(x.x-y.x,x.y-y.y);
}
friend cl operator *(const cl &x,const cl &y){
return cl(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);
}
friend cl operator /(const cl &x,const double &y){
return cl(x.x/y,x.y/y);
}
};
cl a[MAXN],b[MAXN],c[MAXN];
int A[MAXN],B[MAXN];
int L;
int R[MAXN];
int n;
int N,m;
int ans=INF*2+1;
int C,c1,c2;
void fft(cl *a,int f){
int i,j,k;
for(i=0;i<n;i++){
if(i<R[i]){
swap(a[i],a[R[i]]);
}
}
for(i=1;i<n;i<<=1){
cl wn(cos(pi/i),f*sin(pi/i));
for(j=0;j<n;j+=i<<1){
cl w(1,0);
for(k=0;k<i;k++,w=w*wn){
cl x=a[j+k],y=w*a[j+i+k];
a[j+k]=x+y;
a[j+i+k]=x-y;
}
}
}
if(f==-1){
for(i=0;i<n;i++){
a[i]=a[i]/n;
}
}
}
int main(){
int i,j;
scanf("%d%d",&N,&m);
for(i=0;i<N;i++){
scanf("%d",&A[i]);
C+=A[i]*A[i];
c1+=2*A[i];
c2-=2*A[i];
}
for(i=0;i<N;i++){
scanf("%d",&B[i]);
C+=B[i]*B[i];
c1-=2*B[i];
c2+=2*B[i];
}
for(i=0;i<N;i++){
a[i].x=a[N+i].x=A[i];
b[i].x=B[N-i-1];
}
for(n=1;n<N<<2;n<<=1){
L++;
}
for(i=0;i<n;i++){
R[i]=R[i>>1]>>1|((i&1)<<(L-1));
}
fft(a,1);
fft(b,1);
for(i=0;i<n;i++){
c[i]=a[i]*b[i];
}
fft(c,-1);
for(i=0;i<N;i++){
for(j=0;j<=m;j++){
ans=min(ans,C+c1*j+N*j*j-2*int(c[N-1+i].x+.5));
ans=min(ans,C+c2*j+N*j*j-2*int(c[N-1+i].x+.5));
}
}
printf("%d\n",ans);
return 0;
}
/*
5 6
1 2 3 4 5
6 3 3 4 5
*/