IBM SPSS Statistics的K均值聚类分析,是一种采用欧式距离作为分类指标的迭代聚类分析方法。其优点是操作简单,运算速度快,但由于其聚类原理是将欧式距离相似的数据归为一个类别,因此需采用连续型的数据变量。
接下来,我们通过实例来演示一下K均值聚类分析。
一、数据准备
本例使用的是一组店铺的销售数据,包含客流量、销售额与销售量三个连续型变量。我们会使用到以上三个连续变量对数据个案进行K均值聚类分析。
图1:店铺数据
二、K均值聚类参数设置
K均值聚类分析是SPSS分类分析法中的一种,由于其运算的快速性,也被称为“快速聚类”。
图2:K均值聚类
如图3所示,K均值聚类分析设置面板包含变量、聚类中心等设置参数。