SPSS新手教程—两步聚类之参数设置

本文介绍了IBM SPSS Statistics的两步聚类功能,该功能允许同时分析连续型和分类型变量。通过实例,详细讲解了从数据准备到参数设置的全过程,包括设置分类和连续变量、选择距离测量方法、聚类准则以及输出选项。两步聚类的优势在于其适用性广,能处理不同类型的变量,并提供了变量贡献的重要性和可视化数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SPSS的快速聚类(K均值聚类)仅可进行连续型变量的聚类;而系统聚类,虽然可进行连续型与分类型变量的聚类,但同一时间只能进行同一种变量类型的聚类分析。那么,有没有一种聚类方法可同时分析以上两种变量?

答案是肯定的,IBM SPSS Statistics的两步聚类,也称为二阶聚类,就可以同时进行以上两种变量的聚类分析。不仅如此,两步聚类还能分析各种变量的聚类重要性。接下来,我们通过实例来详细了解下吧。

一、数据准备

本例使用的是一组包含客流量、销售额、销售量三个连续型变量,以及店铺类型、星级、所处区域三个分类变量的数据。

图1:店铺数据

图1:店铺数据

二、二阶聚类参数设置

如图1所示,依次单击分析-分类-二阶聚类选项。

图2:二阶聚类

图2:二阶聚类

两步聚类,在SPSS也称为二阶聚类,是通过两个步骤来完成聚类分析。

第一步,通过指定的距离测量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值