Pytorch学习笔记(十五)Image and Video - TorchVision Object Detection Finetuning Tutorial

这篇博客瞄准的是 pytorch 官方教程中 Image and Video 章节的 TorchVision Object Detection Finetuning Tutorial 部分。

完整网盘链接: https://pan.baidu.com/s/1L9PVZ-KRDGVER-AJnXOvlQ?pwd=aa2m 提取码: aa2m 

【注意】:

  1. 这个示例中需要用到一些torchvision的新API,如果你和官网是同步的 2.6.0 版本则可以直接使用,否则无法保证能够运行;
  2. 尽管里面提到了下载一些脚本,但并没有用到,不用担心内容太多;

TorchVision Object Detection Finetuning Tutorial

该教程将在 Penn-Fudan 数据集上微调预训练的 Mask R-CNN 模型用于行人检测和分割。它包含 170 张图像,其中有 345 个行人实例,以此来演示如何使用 torchvision 在自定义数据集上训练对象检测和实例分割模型。

安装下本次教程中所需的依赖

pip install pycocotools

Defining the Dataset

训练对象检测、实例分割、人物关键点检测可以轻松添加新自定义数据集。数据集应继承自标准 torch.utils.data.Dataset 类,并实现 __len____getitem__后者应该返回一个元组,这个教程中提供的python代码其实可以用来训练任何数据集,只要你的数据集满足以下条件即可

  • image: torchvision.tv_tensors.Image 需要一个 shape=[3, H, W] 的纯 Tensor 或者一个 size=(H, W) 的PIL 对象;
  • target 是一个包含以下信息的 dict 对象:
    • boxesshape=[N, 4]torchvision.tv_tensors.BoundingBoxes,值为 [x0, y0, x1, y1] 格式的 N 个边界框的坐标,值域为 [0, W], [0, H]
    • labelsshape=[N]int类型 torch.Tensor,为每个boxes的标签,0 代表背景,如果你的数据集中没有背景标签,就不要使用0,直接从1开始;
    • image_idint类型的图像对象标识符,对于数据集中的所有图像而言都是是唯一的;
    • areashape=[N]float 类型 torch.Tensorboxes的面积,在使用 COCO 度量进行评估时使用此值,将度量分数分为小框、中框和大框;
    • iscrowdshape=[N]uint8 类型 torch.Tensoriscrowd=True 的样本将在评估期间被忽略;
    • masksshape=[N, H, W]torchvision.tv_tensors.Mask 类型,每个对象的分割掩码;

Writing a custom dataset for PennFudan

首先从这个 链接 中下载并解压到 data 文件夹中,或者使用下面的命令:

$ wget https://www.cis.upenn.edu/~jshi/ped_html/PennFudanPed.zip -P data
$ cd data && unzip PennFudanPed.zip

抽查一对数据

import matplotlib.pyplot as plt
from torchvision.io import read_image

image = read_image("data/PennFudanPed/PNGImages/FudanPed00046.png")
mask = read_image("data/PennFudanPed/PedMasks/FudanPed00046_mask.png")

plt.figure(figsize=(16, 8))
plt.subplot(121)
plt.title("Image")
plt.imshow(image.permute(1, 2, 0))
plt.subplot(122)
plt.title("Mask")
plt.imshow(mask.permute(1, 2, 0))

在这里插入图片描述

针对这个数据集编写一个 torch.utils.data.Dataset 类,将image、bounding boxes、mask包装到 torchvision.tv_tensors.TVTensor 类中,其中image Tensor由 torchvision.tv_tensors.Image 包装;bounding boxes 由 torchvision.tv_tensors.BoundingBoxes 包装;mask 由 torchvision.tv_tensors.Mask 包装。由于 torchvision.tv_tensors.TVTensortorch.Tensor 子类,因此包装的对象也是 Tensor 并继承了的 torch.Tensor API。

导入依赖库

import os
import torch

from torchvision.io import read_image
from torchvision.ops.boxes import masks_to_boxes
from torchvision import tv_tensors
from torchvision.transforms.v2 import functional as F

定义数据集的Dataset对象

class PennFudanDataset(torch.utils.data.Dataset):
    def __init__(self, root, transforms):
        self.root = root
        self.transforms = transforms
        self.imgs = list(sorted(os.listdir(os.path.join(root, "PNGImages"))))
        self.masks = list(sorted(os.listdir(os.path.join(root, "PedMasks"))))

    def __getitem__(self, idx):
        img_path = os.path.join(self.root, "PNGImages", self.imgs[idx])
        mask_path = os.path.join(self.root, "PedMasks", self.masks[idx])
        
        img = read_image(img_path)
        mask = read_image(mask_path)
        obj_ids = torch.unique(mask)
        obj_ids = obj_ids[1:]
        num_objs = len(obj_ids)

        masks = (mask == obj_ids[:, None, None]).to(dtype=torch.uint8)
        boxes = masks_to_boxes(masks)
        labels = torch.ones((num_objs,), dtype=torch.int64)

        image_id = idx
        area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
        iscrowd = torch.zeros((num_objs,), dtype=torch.int64)

        img = tv_tensors.Image(img)

        target = {}
        target["boxes"] = tv_tensors.BoundingBoxes(boxes, format="XYXY", canvas_size=F.get_size(img))
        target["masks"] = tv_tensors.Mask(masks)
        target["labels"] = labels
        target["image_id"] = image_id
        target["area"] = area
        target["iscrowd"] = iscrowd

        if self.transforms is not None:
            img, target = self.transforms(img, target)

        return img, target

    def __len__(self):
        return len(self.imgs)

Defining your model

模型部分使用基于 Faster R-CNNMask R-CNNFaster R-CNN 是一种预测图像中潜在对象的边界框和类别分数的模型。
在这里插入图片描述


1 - Finetuning from a pretrained model

如果你想直接使用从 COCO 上预训练的模型,并希望针对特定类进行微调。

使用下面的代码

import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor

model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights="DEFAULT")

num_classes = 2
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)

2 - Modifying the model to add a different backbone

如果你想要修改模型以使用不同的 backbone,使用下面的代码。这里使用的是MobileNetV2的特征层及其以上部分作为backbone,然后用AnchorGenerator对计算得到的特征层进行锚点的生成,相当于将 FasterRCNN 中的部分功能层进行替换,但总体框架仍然使用的 FasterRCNN 的结构。

导入依赖库

import torchvision
from torchvision.models.detection import FasterRCNN
from torchvision.models.detection.rpn import AnchorGenerator

MobileNetV2 特征层骨架

backbone = torchvision.models.mobilenet_v2(weights="DEFAULT").features
backbone.out_channels = 1280

anchor生成器和ROI池化作为模型的功能层

anchor_generator = AnchorGenerator(
    sizes=((32, 64, 128, 256, 512),),
    aspect_ratios=((0.5, 1.0, 2.0),)
)

roi_pooler = torchvision.ops.MultiScaleRoIAlign(
    featmap_names=['0'],
    output_size=7,
    sampling_ratio=2
)

完整模型:

model = FasterRCNN(
    backbone,
    num_classes=2,
    rpn_anchor_generator=anchor_generator,
    box_roi_pool=roi_pooler
)

这里可以自己写一个函数用来将模型结构写入到tensorboard中方便查看。
【注意】:该函数不是一个通用函数,如果想要在其他地方使用需要修改一些地方。

def log_model_to_tensorboard(model, log_dir="log"):
    from torch.utils.tensorboard import SummaryWriter
    model.eval()
    writer = SummaryWriter(log_dir=log_dir)
    dummy_input = torch.randn(3, 224, 224)
        
    class WrapperModel(torch.nn.Module):
        def __init__(self, model):
            super().__init__()
            self.model = model
            
        def forward(self, x):
            detections = self.model(x)
            return [detections[0]["boxes"]]    # 主要是修改这个位置

    wrapped_model = WrapperModel(model)
    writer.add_graph(wrapped_model, dummy_input.unsqueeze(0))
    writer.close()

log_model_to_tensorboard(model)

允信并在终端输入以下命令:

$ tensorboard --logdir=log

Chrome 浏览器中打开http://localhost:6006/ 地址即可查看模型结构:
在这里插入图片描述


Object detection and instance segmentation model for PennFudan Dataset

这里使用上面方案中的第一个,对模型进行微调,并使用 Mask R-CNN 来计算实例分割掩码。

import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor

def get_model_instance_segmentation(num_classes):
    model = torchvision.models.detection.maskrcnn_resnet50_fpn(weights="DEFAULT")
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
    
    in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
    hidden_layer = 256
    
    model.roi_heads.mask_predictor = MaskRCNNPredictor(
        in_features_mask,
        hidden_layer,
        num_classes
    )
    return model

Putting everything together

references/detection/ 中有许多辅助函数来简化训练和评估检测模型。这里使用 references/detection/engine.pyreferences/detection/utils.py,使用以下命令下载:

你也可以手动打开里面的链接,将其下载到当前目录下

os.system("wget https://raw.githubusercontent.com/pytorch/vision/main/references/detection/engine.py")
os.system("wget https://raw.githubusercontent.com/pytorch/vision/main/references/detection/utils.py")
os.system("wget https://raw.githubusercontent.com/pytorch/vision/main/references/detection/coco_utils.py")
os.system("wget https://raw.githubusercontent.com/pytorch/vision/main/references/detection/coco_eval.py")
os.system("wget https://raw.githubusercontent.com/pytorch/vision/main/references/detection/transforms.py")

定义数据增强函数

from torchvision.transforms import v2 as T

def get_transform(train):
    transforms = []
    if train:
        transforms.append(T.RandomHorizontalFlip(0.5))
    transforms.append(T.ToDtype(torch.float, scale=True))
    transforms.append(T.ToPureTensor())
    return T.Compose(transforms)

Testing forward() method

在训练之前测试一下模型的输出,可以大概了解预训练模型在这个任务下是个什么性能。

训练前的试验

加载预训练模型

import utils

model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights="DEFAULT")
dataset = PennFudanDataset("data/PennFudanPed", get_transform(train=True))
data_loader = torch.utils.data.DataLoader(
    dataset,
    batch_size=2,
    shuffle=True,
    collate_fn=utils.collate_fn
)

用数据集中的第一对来跑一下训练

images, targets = next(iter(data_loader))
images = list(image for image in images)
targets = [{k: v for k,v in t.items()} for t in targets]
output = model(images, targets)
print(output)

用一个随机数来进行一次推理

model.eval()
x = [torch.rand(3, 300, 400), torch.randn(3, 500, 400)]
predictions = model(x)
print(predictions[0])

正式训练

准备数据集与加载器

from engine import train_one_epoch, evaluate

device = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu"
print(device)

num_classes = 2
dataset = PennFudanDataset('data/PennFudanPed', get_transform(train=True))
dataset_test = PennFudanDataset('data/PennFudanPed', get_transform(train=False))

indices = torch.randperm(len(dataset)).tolist()
dataset = torch.utils.data.Subset(dataset, indices[:-50])
dataset_test = torch.utils.data.Subset(dataset_test, indices[-50:])

data_loader = torch.utils.data.DataLoader(
    dataset, 
    batch_size=2, 
    shuffle=True,
    collate_fn=utils.collate_fn
)

data_loader_test = torch.utils.data.DataLoader(
    dataset_test,
    batch_size=1,
    shuffle=False,
    collate_fn=utils.collate_fn
)

创建模型

model = get_model_instance_segmentation(num_classes)
model.to(device)

params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)

定义训练过程

num_epochs = 2

for epoch in range(num_epochs):
    train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=10)
    lr_scheduler.step()
    evaluate(model, data_loader_test, device=device)

抽查一下训练结果

import matplotlib.pyplot as plt
from torchvision.utils import draw_bounding_boxes, draw_segmentation_masks

拉取一个图像

image = read_image("data/PennFudanPed/PNGImages/FudanPed00046.png")
eval_transform = get_transform(train=False)

模型执行推理

model.eval()
with torch.no_grad():
    x = eval_transform(image)
    x = x[:3, ...].to(device)
    predictions = model([x,])
    pred = predictions[0]

结果显示

image = (255.0 * (image - image.min()) / (image.max() - image.min())).to(torch.uint8)
image = image[:3, ...]
pred_labels = [f"pedestrian: {score:.3f}" for label, score in zip(pred["labels"], pred["scores"])]
pred_boxes = pred["boxes"].long()
output_image = draw_bounding_boxes(image, pred_boxes, pred_labels, colors="red")

masks = (pred["masks"] > 0.7).squeeze(1)
output_image = draw_segmentation_masks(output_image, masks, alpha=0.5, colors="blue")

plt.figure(figsize=(12, 12))
plt.imshow(output_image.permute(1, 2, 0))

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值