Hadoop定义的SequenceFile和MapFile的编程实现

Hadoop定义了SequenceFile 和MapFile两种类型的数据结构以适应Mapreduce编程框架的需要,Map输出的中间结果就是由他们表示的。其中MapFile是经过排序并带有索引的SequenceFile.

SequenceFile记录的是key/value对的列表,是序列化后的二进制文件,因此是不能直接查看的,可以通过命令查看内容:

hadoop fs -text myseq.seq

代码实现:

package com.jr.sun.ly;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.SequenceFile.Writer;
import org.apache.hadoop.io.Text;
import org.junit.Test;


/**
 * 序列文件格式
 *
 */
public class TestSequenceFile {
/**
 * 写入
 * @throws IOException 
 */
	@Test
	public void write() throws IOException {
		Configuration conf=new Configuration();
		FileSystem fs = FileSystem.get(conf);
		Path name=new Path("/user/hadoop/myseq.seq");
	//	Path name=new Path("g:/elyq/myseq.seq");
		Writer w=SequenceFile.createWriter(fs, conf, name, IntWritable.class, Text.class);
		w.append(new IntWritable(100), new Text("tom"));
		w.append(new IntWritable(100), new Text("toms"));
		w.append(new IntWritable(100), new Text("tomLee"));
		w.close();
		
	}
	/**
     *读取
     */
	@Test
	public void read() throws IOException {
		Configuration conf=new Configuration();
		FileSystem fs = FileSystem.get(conf);
		Path name=new Path("/user/hadoop/myseq.seq");
		IntWritable key=new IntWritable();
		Text value=new Text();
		SequenceFile.Reader reader=new SequenceFile.Reader(fs, name,conf);
		//遍历所有key-value
		while(reader.next(key))
		{
			reader.getCurrentValue(value);
			System.out.println(key.get()+":"+value.toString());
		}
	}
}

MapFile是已经拍过序的SequenceFile,它的使用与SequenceFile类似。

package com.jr.sun.ly;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.MapFile;
import org.apache.hadoop.io.Text;
import org.junit.Test;

public class TestMapFile {
	/**
	 * 写入
	 * @throws IOException 
	 */
		@Test
		public void write() throws IOException {
			Configuration conf=new Configuration();
			FileSystem fs = FileSystem.get(conf);
			String name="/user/hadoop/mymap";
			IntWritable iw=new IntWritable();
			Text txt=new Text();
			MapFile.Writer w=new MapFile.Writer(conf, fs, name, IntWritable.class, Text.class);
			w.setIndexInterval(256);
			for(int i=1;i<=1000;i++) {
				w.append(new IntWritable(i), new Text("tom"+i));
			}
			w.close();
			
		}
		
		/**
		 * 读
		 * @throws IOException 
		 */
			@Test
			public void getClosestByKey() throws IOException {
				Configuration conf=new Configuration();
				FileSystem fs = FileSystem.get(conf);
				String name="/user/hadoop/mymap";
				IntWritable iw=new IntWritable();
				Text txt=new Text();
				MapFile.Reader reader=new MapFile.Reader(fs, name, conf);
				IntWritable key= (IntWritable)reader.getClosest(new IntWritable(0), txt);
				System.out.println(key);
				
			}
}

 

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: MapReduce编程可以实现文件合并和去重操作。具体步骤如下: 1. 首先,将需要合并和去重的文件上传到Hadoop分布式文件系统(HDFS)中。 2. 接着,编写MapReduce程序,其中Mapper阶段的任务是将输入文件中的每一行作为key,value为空的键值对输出。Reducer阶段的任务是将相同的key合并,并去除重复的value。 3. 在MapReduce程序中,需要设置输入路径和输出路径。输入路径为需要合并和去重的文件所在的HDFS目录,输出路径为合并和去重后的文件所在的HDFS目录。 4. 运行MapReduce程序,等待程序执行完毕。 5. 最后,从输出路径中获取合并和去重后的文件,即可完成文件合并和去重操作。 需要注意的是,在MapReduce程序中,需要设置合适的Reducer数量,以保证程序的性能和效率。同时,还需要考虑到数据倾斜等问题,采取相应的优化措施,以提高程序的运行效率。 ### 回答2: MapReduce是一种在数据处理领域广泛使用的编程模型。本文将讨论如何使用MapReduce实现文件合并和去重操作。 文件合并: 假设有多个文件需要合并成一个文件。我们可以将每个文件映射到一个键值对中,其中键表示文件名,值表示文件内容。然后通过Reduce函数将所有值合并到一个文件中。 具体实现步骤如下: 1. 将每个文件映射到一个键值对中。键为文件名,值为文件内容。 2. 将所有键值对按照键进行排序。 3. 在Reduce函数中,将所有值合并到一个文件中。 具体代码如下: map(key, value): # 将每个文件映射到一个键值对中 emit(key, value) reduce(key, values): # 将所有值合并到一个文件中 with open(key, "wb") as outfile: for value in values: outfile.write(value) 文件去重: 假设有多个文件中的记录存在重复数据,需要将其去重。我们可以将每个记录映射到一个键值对中,其中键表示记录的内容,值为1。然后通过Reduce函数将所有值合并到一个文件中,去除重复数据。 具体实现步骤如下: 1. 将每个记录映射到一个键值对中。键为记录的内容,值为1。 2. 在Reduce函数中,将所有值累加起来,去除值大于1的记录。 具体代码如下: map(key, value): # 将每个记录映射到键值对中 emit(key, 1) reduce(key, values): # 去除重复记录 count = 0 for value in values: count += value if count == 1: emit(key, "") ### 回答3: MapReduce编程模型是处理大规模数据集的强大工具,可以帮助我们快速地完成文件合并和去重操作。文件合并和去重操作是企业中日常工作中非常常见的操作,特别是对于需要处理海量数据的企业而言,这些操作尤为重要。 文件合并操作: MapReduce编程模型的文件合并操作可以分为两个步骤——map和reduce。 1. Map操作: Map操作的核心是将文件中的每一行都作为一个key-value对,将每个key相同的value按顺序组合成一组,作为reduce操作的输入。对于大规模的数据集,我们可以将数据分为多个不同的部分,每部分都运行一个独立的mapper,将处理结果输出到文件系统上。 2. Reduce操作: Reduce操作的主要目的是将经过Map操作后产生的key-value对按照某种规则聚合在一起,用于生成最终的输出文件。对于需要进行文件合并的场景,最终输出的文件是由多个经过合并后的小文件组成。 去重操作: 去重操作与文件合并类似,也可以使用MapReduce编程模型,需要分为两个步骤——map和reduce。 1. Map操作: Map操作的核心是将重复的数据进行分组。对于map操作,我们可以将数据集中所有的value都设为一个常数,这样检测重复值只需要比较key即可。在map操作中,如果发现有相同的key-value对,就将其过滤掉,只传递其中一个给reduce操作。 2. Reduce操作: Reduce操作的主要功能是将来自不同mapper的处理结果聚合起来,生成最终的输出结果。在去重操作中,reduce操作会输出所有的不重复的数据。 总而言之,MapReduce编程模型可以帮助我们快速地完成文件合并和去重操作,扩大了我们处理大规模数据集的能力,也有助于加快企业的数据处理效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵厚雄

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值