- 博客(61)
- 收藏
- 关注
原创 STM32 HAL I2C(IIC)通信的序列传输(restart condition)
介绍了HAL库的序列传输函数(HAL_I2C_Master/Slave_Seq_Transmit/Receive_IT/DMA)
2022-12-30 16:01:26 5055 5
原创 CubeMX+VSCode+Ozone的STM32开发工作流(三)利用Ozone进行可视化调试和代码分析
利用ozone实时监控变量并可视化输出,支持jlink和cmsis-dap/dap-link!
2022-11-22 13:19:48 7899 3
原创 CubeMX+VSCode+Ozone的STM32开发工作流(二)VSCode环境配置
使用arm gnu 工具链编译调试stm32程序,支持daplink和jlink、stlink
2022-11-22 13:17:05 5546 1
原创 CubeMX+VSCode+Ozone的STM32开发工作流(一)背景知识介绍
了解过嵌入式开发的你一定接触过Keil,这款20世纪风格UI的IDE伴随很多人度过了学习单片机的岁月。然而由于其缺少代码补全、高亮和静态检查的支持,以及为人诟病的一系列逆天的设置、极慢的编译速度(特别是在开发HAL库时),很多开发者开始转向其他IDE。IAR、CubeIDE等都是广为使用的“其他”IDE,但是他们也有各自的缺点,不能让笔者满意。作为IDE界的艺术家,JetBrains推出的Clion也在相当程度上完善了对嵌入式开发的支持。但VSCode还是最好用的。
2022-11-22 13:13:16 2518 1
原创 了解CV和RoboMaster视觉组(五)参数自适应方法和稳健特征
介绍了自适应阈值、自适应图像滤波和直方图均衡化,以及良好的图像特征应该具备的性质
2022-08-10 17:40:46 833
原创 Linux安装OpenCV——利用包管理器apt从源仓库安装(绝对是最简单的安装方法)
不需要编译也不需要cmake!介绍了OpenCV最简单的安装方式,利用apt/yum包管理器从源仓库安装!
2022-07-29 23:11:16 7451 3
原创 了解CV和RoboMaster视觉组(五)CNN没有不变性?
卷积神经网络CNN是否能提取到具有旋转/平移/颜色/亮度/对比度/尺度不变的特征?本文为你揭开答案的冰山一角。
2022-05-22 21:46:58 1212 4
原创 了解CV和RoboMaster视觉组(五)local-distribution汇聚方法
介绍了传统目标检测和图像分类local-distribution方法,包括gradient-based、GIST、HOG、
2022-05-21 17:44:37 491 1
原创 了解CV和RoboMaster视觉组(五)统计特征和global-based方法
介绍图像处理中的特征工程以及利用全局统计特征如直方图和梯度统计等进行分类的方法
2022-05-06 10:47:56 557
原创 了解CV和RoboMaster视觉组(五)参数自适应与稳健特征
介绍了图像处理和识别中的参数自适应方法如阈值自适应、直方图均衡化和亮度自适应等。
2022-05-01 15:13:20 1201 4
原创 NanoDet代码逐行精读与修改(五.2)计算Loss
介绍了nanodet中loss的计算(第一部分),非常详细地给出了每一步的过程,以320x320的默认输入和默认架构为例,给出了每一个tensor的维度!
2022-03-24 20:40:54 2087 8
原创 Ubuntu利用xrdp实现远程桌面连接(局域网可用)
介绍了在ubuntu下修改桌面管理器为xubuntu并使用xrdp连接,可以方便的使用windows下的远程桌面进行连接并操控,流畅程度远超VNC
2022-03-15 16:23:23 16583 5
原创 了解CV和RoboMaster视觉组(五)运动建模与预测
neozng1@hnu.edu.cn5.3.2.预测方法运动预测是自瞄击打装甲板的关键一步,如果没能预测目标的移动,那么我们的解算输出用于只会跟在目标的屁股后面,使得打出的弹丸始终落后于目标,扑向空气划过一道淡绿色的曲线。同时,运动预测和运动学建模也是目标跟踪领域的一个研究方向,利用此技术能够提出精确的区域提议,使得候选区域数目降低,加快处理速度。我们这里将按照循序渐进的原则,介绍运动预测的发展和方法。朴素方法:简单物理规律的应用这种算法就如标题一样简单,我们直接根据物理规律对物体的运动进行预
2022-03-14 21:13:43 6441 1
原创 了解CV和RoboMaster视觉组(五)滤波器、观测器和预测方法:自适应滤波器的应用
介绍了自适应滤波器的应用,如降噪、系统辨识、序列信号预测等。并以AEC为例,详细的说明了具体应用,并且指出了大量网上其他博客和资料中出现的讹误
2022-03-14 12:22:20 966
原创 了解CV和RoboMaster视觉组(五)滤波器、观测器和预测方法:维纳滤波器Wiener Filter,LMS
对维纳滤波器进行了完整的数学推导,以及对其他最优滤波器的优缺点分析
2022-03-09 21:00:29 691
原创 了解CV和RoboMaster视觉组(五)滤波器、观测器和预测方法:粒子滤波器Particle Filter
--neozng1@hnu.edu.cn Partcle Filter(粒子滤波器,时域) PF可以看作是UKF的进化版。UKF要求用服从高斯分布的一组点经过转换之后去通过采样来得到新的高斯分布进而近似真实的状态分布;而PF则是不再追求用高斯分布去近似真实分布,直接用一组点经过模型转换后再采样,用此后验数据来近似任意分布。它们的区别在于UKF是通过一组假设在通过系统的转换后仍然服从高斯分布的采样点来求其参数μ和σ,是一种参数估计方法;PF是用已知的采样点数据去求未知的任意分布,或者从另一个角度来说
2022-03-09 20:54:36 586
原创 了解CV和RoboMaster视觉组(五)滤波器、观测器和预测方法:卡尔曼滤波器
介绍了Kalman Filter,扩展卡尔曼滤波器,无迹卡尔曼滤波器
2022-03-09 20:52:21 1967
原创 NanoDet代码逐行精读与修改(四)动态软标签分配:dynamic soft label assigner
介绍了Nanodet-plus中的软标签分配模块,和一些动态标签匹配的知识,非常详细!(封面图源Megavii:OTA)
2022-03-06 16:19:36 5677 13
原创 NanoDet代码逐行精读与修改(三)辅助训练模块AGM
介绍了NanoDet-plus的辅助训练模块assist guidance module和Generalizaed focal loss中的distribution focal loss的原理。封面图源知乎:https://www.zhihu.com/people/MicrostrongAI
2022-03-06 13:23:11 2652
原创 (五)比赛中的CV算法(下)目标检测终章:Vision Transformer
介绍了DETR和Deformable DETR两个基于Transformer模型的检测网络,并概览了Vision Transformer。同时作为深度学习部分的最后一篇文章,对DNN方法进行总结。
2022-02-27 11:21:24 2969
原创 OpenCV在CMake时出现文件无法下载的解决办法(利用python自动下载脚本)
编写了一个用于下载opencv在cmake时难以下载的部分动态库和包,非常好用方便
2022-02-23 16:12:57 969
原创 MacOS下利用CMake编译安装OpenCV(带Contrib包)
MacOS下利用CMake进行定制化编译安装(可选Contrib包的安装),并提供了opencv依赖的安装方式。
2022-02-23 11:20:13 6507 3
原创 Windows下使用Msys2(MinGW环境)直接安装预编译的OpenCV
利用Msys2提供的MinGW环境和pacman包管理器直接从原仓库安装预编译的opencv库
2022-02-03 22:00:14 5042 4
原创 Ubuntu/Windows双系统安装巨详细——全面解决各种问题(疑难杂症),有手就行
安装Ubuntu/Windows双系统,安装linux系统,安装Ubuntu16.04,18.04,20.04等等。汇总解决各种疑难杂症!
2022-02-03 21:47:38 39001 12
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人