四、 基本弧碰撞响应
下面要作的是用给定的量将两个物体分离,并添加一点摩擦和一些静态摩擦,以便使物体静止在斜面上。
该部分使用简单的速度影响算法。同样,为了使碰撞响应更加真实,物体被赋予了质量(更好的是质量的倒数)。
质量的倒数是比较常用的,该值为零意味着该物体具有无穷大的质量,并因此不能移动。同时速度响应中使用质量的倒数具有更好的物理精确性。
现在我们知道多边形A在位置PA具有速度VA,与位置PB速度VB的多边形B发生碰撞。Ncoll和tcoll定义了碰撞平面。如果碰撞前是交叠的,首先分离两个物体,如下:
if (tcoll < 0)
{
if (A.InvMass == 0)
PB += Ncoll * tcoll;
else if (B.InvMass == 0)
PA -= Ncoll * tcoll;
else
{
PA -= Ncoll * (tcoll *
0.5f
);
PB += Ncoll * (tcoll *
0.5f
);
}
}
然后可以调用碰撞响应的代码,为了简化,我们可以考虑一个粒子碰到一个平面上
这里V表示粒子的进入速度,V’是粒子发生碰撞后的速度,N为平面的法向。
V’ = V – (2 * (V . N)) * N
理想状态下,碰撞前后粒子的能量是相同的。但是我们可以给粒子的碰撞加入弹性系数
V’ = V – ((1 + elasticity) * (V . N)) * N
弹性系数的范围为[0,1]如果为零意味着粒子将沿着平面滑动,如果为1,粒子将没有能量损耗的弹开。
同样我们可以加入一些摩擦。如果我们沿着碰撞的法线和碰撞平面方向分解速度,我们可以同时计算弹性系数和摩擦力。
这里,速度被沿着平面的法向和平面分解。弹性系数将影响沿着平面法向的响应(Vn),摩擦力将影响速度的切向(Vt)。
同样摩擦系数的范围为[0,1]. 0意味着没有摩擦力,1意味着粒子将突然停止。
Vn = (V . N) * N;
Vt = V – Vn;
V’ = Vt * (1 – friction) + Vn * -(elasticity);
对于静摩擦力,简单地在速度Vt小于给定的值时设置Vt为(0,0), 或者设置摩擦系数稍微比1大( 1.001f )。
现在,计算两个物体间的碰撞响应。原理是相同的。然而,计算是基于物体的相对速度的,物体将象上述一样受到影响。结果将添加到每一个物体上。
现在我们需要修改一下系数,因为现在我们使用了相对的概念
Vector V = Va – Vb; // relative velocity
Vn = (V . N) * N;
Vt = V – Vn;
if (Vt.Length() <
0.01f
) friction =
1.01f
;
// response
V’ = Vt * -(friction) + Vn * -(1 + elasticity);
Va += V’ *
0.5f
;
Vb -= V’ *
0.5f
;
这里使物体A和物体B具有相同的响应结果。
为了使结果更加有趣,A和B可以有不同质量。显然较轻的物体会受到较大影响,较重的物体被碰撞影响较小。所以我们可以使用质量来确定两个物体碰撞响应效果。较大的物体具有较小的质量的倒数,如果质量为无穷大质量的倒数为零。
Va += V’ * (InvMassA) / (InvMassA + InvMassB);
Vb -= V’ * (InvMassB) / (InvMassA + InvMassB);