Berland has n cities connected by m bidirectional roads. No road connects a city to itself, and each pair of cities is connected by no more than one road. It is not guaranteed that you can get from any city to any other one, using only the existing roads.
The President of Berland decided to make changes to the road system and instructed the Ministry of Transport to make this reform. Now, each road should be unidirectional (only lead from one city to another).
In order not to cause great resentment among residents, the reform needs to be conducted so that there can be as few separate cities as possible. A city is considered separate, if no road leads into it, while it is allowed to have roads leading from this city.
Help the Ministry of Transport to find the minimum possible number of separate cities after the reform.
The first line of the input contains two positive integers, n and m — the number of the cities and the number of roads in Berland (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000).
Next m lines contain the descriptions of the roads: the i-th road is determined by two distinct integers xi, yi(1 ≤ xi, yi ≤ n, xi ≠ yi), where xi and yi are the numbers of the cities connected by the i-th road.
It is guaranteed that there is no more than one road between each pair of cities, but it is not guaranteed that from any city you can get to any other one, using only roads.
Print a single integer — the minimum number of separated cities after the reform.
4 3 2 1 1 3 4 3
1
5 5 2 1 1 3 2 3 2 5 4 3
0
6 5 1 2 2 3 4 5 4 6 5 6
1
In the first sample the following road orientation is allowed: , , .
The second sample: , , , , .
The third sample: , , , , .
题意:给定每个边的连接哪两个城市,每条边为单向边,方向自定,问:将每条边确定方向后,有几个入度为0的点
思路:一开始想的好复杂,后来知道直接判断边和点的关系就好了。
如果一个连通块内 边<点 那么就没有回路,根节点的入度为0,ans++;
(注意一开始建立的是双边,所以此处边的数目要除以2)
#include<cstdio> #include<vector> #include<cstring> using namespace std; vector<int >a[100007]; int n,m; int vis[100007]; int all,node; void dfs(int now) { //printf("now:%d\n",now); vis[now]=1; all+=a[now].size(); node++; for(int i=0;i<a[now].size();i++) { int to=a[now][i]; if(!vis[to]) { dfs(to); } } } int main() { while(scanf("%d%d",&n,&m)!=EOF) { int x,y; for(int i=0;i<m;i++) { scanf("%d%d",&x,&y); a[x].push_back(y); a[y].push_back(x); } memset(vis,0,sizeof vis); int ans=0; for(int i=1;i<=n;i++) { all=0; node=0; if(!vis[i]) { //ans++; dfs(i); // printf("all:%d node:%d\n",all,node); if(all/2<node) ans++; } } printf("%d\n",ans); } return 0; }