====算法====
文章平均质量分 77
_uppercase
github.com/pantynopants
(被自建站搞得烦烦的不折腾了
展开
-
三门问题 概率论
三门问题,亦称为蒙特霍问题(英文:Monty Hall problem),最初的表述形式:参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门就可以赢得该汽车,而另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人开启剩下两扇门的其中一扇,露出其中一只山羊。主持人其后会问参赛者要不要换另一扇仍然关上的门。问题是:换另一扇门会否增加参赛者赢得汽车的原创 2016-07-10 11:18:32 · 5763 阅读 · 1 评论 -
A*算法 机器学习十大常用算法
http://blog.jobbole.com/71044/ 系列文章http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html实现 http://blog.jobbole.com/85676/原创 2017-03-15 20:41:55 · 1818 阅读 · 0 评论 -
RNN学习资源和笔记
http://blog.csdn.net/soiliml/article/details/47421455http://news.cngold.org/c/2016-08-15/c4323657_3.htmlhttp://blog.csdn.net/nxcxl88/article/details/52590500http://blog.csdn.net/heyongluoyao8/article/d原创 2017-03-15 22:26:04 · 1057 阅读 · 0 评论 -
今日头条 面试题一例
之前同学面试今日头条,碰到了破浪数问题 即在数组上升下降不定时,找到其中一个波峰 如{1,2,3, 1,0,-1, -3,1,3, 4,5,2, 1,0,2, 3,2,1}找到3即可最优为O(logn)解法 随手写了一下,马马虎虎能满足要求;望指正public class test{ // static int[] array = new int[]{1,2,3, 1,0,-1, -3原创 2017-03-08 17:29:43 · 2007 阅读 · 0 评论 -
Feature extraction feature selection Dimension reduction
Feature extraction和feature selection 都同属于Dimension reduction。要想搞清楚问题当中二者的区别,就首先得知道Dimension reduction是包含了feature selection这种内在联系,再在这种框架下去理解各种算法和方法之间的区别。和feature selection不同之处在于feature extraction是在原有特征基转载 2017-01-21 00:32:30 · 944 阅读 · 0 评论 -
MPI 函数说明 Dining philosophers哲学家进餐问题
MPI函数说明(1)并行初始化函数:int MPI_Init(int *argc,char ***argv) 参数描述:argc为变量数目,argv为变量数组,两个参数均来自main函数的参数(2)并行结束函数: int MPI_Finalize()(3)获得当前进程标识函数:int MPI_Comm_rank(MPI_Comm comm,int *rank) 参数描述:comm为该进程所原创 2016-06-06 09:55:37 · 999 阅读 · 0 评论 -
Latex reStructuredText 入门 math 数学公式写法
reStructuredTexthttp://docutils.sourceforge.net/docs/user/rst/quickref.htmlLatex在线latex写公式 在线latex写公式 在线latex 有中文模板, 因此较推荐 在线latex 可分享 免注册原创 2016-08-12 16:28:43 · 3923 阅读 · 1 评论 -
梯度下降法 线性回归 多项式回归 python实现
cost函数 J 代价函数 二维的cost函数曲线 多个变量时的情景 特征缩放 平均数归一化 梯度下降 多项式回归 Python实现两个变量x0 x1 其他问题数组横向纵向拼接摘自吴恩达老师课程week1-2,为其概括复习版回归与最优化-广义线性回归 co原创 2016-07-29 12:19:47 · 8631 阅读 · 3 评论 -
Boyer-Moore 算法 与KMP算法的对比
Boyer-Moore 算法Boyer-Moore 算法概述与对比伪码例子1例子2概述与对比 KMP算法并不是效率最高的算法,实际采用并不多。各种文本编辑器的”查找”功能(Ctrl+F),大多采用Boyer-Moore算法。Boyer-Moore算法不仅效率高,而且构思巧妙,容易理解。 伪码while (!matched && !exhausted){ while (原创 2016-04-26 18:31:11 · 1232 阅读 · 0 评论 -
排序 查找 树 图 的时间复杂度
排序法 简单排序 快速排序 堆排序 归并排序克鲁斯卡尔普里姆迪杰斯特拉拓扑排序关键路径平均时间 最差情形 稳定度 额外空间 备注 冒泡 O(n2) O(n2) 稳定O(1)n小时较好 交换 O(n2)O(n2) 不稳定 O(1)n小时较好 选择原创 2016-04-26 16:20:42 · 3279 阅读 · 0 评论 -
图论 二分图 小世界网络 语义网络
图论小世界网络二分图 最小覆盖 最大匹配聚合系数 集聚系数社交网络物联网语义网络图论首先“连通图”很容易理解,比如这个世界每个人做一个节点的话,把相互认识的两人间连一条线,整张图多半可能就是一张连通图。对于一个连通图G,就产生了两个概念:特征路径步长和聚合系数 特征路径长度(characteristic path length)原创 2016-07-29 01:27:09 · 3435 阅读 · 2 评论 -
最小二乘法 多项式曲线拟合 原理公式理解 Python 实现
曲线拟合方法最小二乘法最大似然估计梯度下降法多项式拟合Python代码数据集征兵抽签1-366号y366个不同的人抽x结果表明生日靠后的人易抽到小号概念最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。原理 给定数据点pi(xi,yi),其中i=1,2,…,m。求近似曲线y= φ(x)。并且使得近似曲线与y=f(x)的偏差原创 2016-07-27 20:54:52 · 13677 阅读 · 0 评论 -
滤波学习资源 总结
http://blog.csdn.net/heyijia0327/article/details/40899819 博主主要用公式推导,系列文章有PF和KFhttp://www.cnblogs.com/rubbninja/p/6220284.html 简单,有Python和matlab仿真代码,关注定位方面http://www.cnblogs.com/21207-iHome/p/5235768.原创 2017-07-20 17:04:36 · 506 阅读 · 0 评论