2018 ccpc秦皇岛 Riddle 状压dp

这篇博客介绍了2018年CCPC秦皇岛竞赛中的一道题目,该题涉及到状压动态规划(DP)的解法。题目要求处理一个数组,数组元素可以作为物品或袋子,需要计算在一定条件下的方案总数。博主分享了解题思路,重点讲解了如何使用二进制表示状态,并通过dp数组记录方案数,利用计数01背包的转移过程进行状态转移。解题关键在于理解如何从当前状态转移到新状态,并正确应用转移方程`dp[i+j]=dp[j]*cnt[i]`。
摘要由CSDN通过智能技术生成

拖了一年了才补。。。去年现场赛3个小时没做出来,今年看了半个小时就有思路了= =

题目大意

有数组 a n {a_n} an其中 a i {a_i} ai可以作为物品,也可以作为袋子
如果作为物品, a i {a_i} ai作为物品的重量,不一定要装在袋子里
如果作为袋子, a i {a_i} ai作为袋子的容量,必须要装满物品。
对每一组输入,输出总的方案数
n < 15 , a i < 2000 n<15,{a_i}<2000 n<15,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值