线性代数和微积分基础
基础公式
向量基础:
标量:是一个单独的数,一般用普通小写字母或者希腊字母表示a,α等。
向量:一个同时具有大小和方向的几何对象[a1,a2,...aN],通俗来讲把数排列成一行或者一列就是向量。有行向量和列向量的分类,向量的模可以理解为向量的长度,向量的范数是向量的另一种的度量方式,向量的模=向量2范数。
向量的1阶范数
机器学习基础公式:
矩阵计算
矩阵的定义:由M*N个数排列成M行,N列的表
矩阵的加法
import numpy as np
x=np.mat([[1,2],[3,4]])
y= np.mat([[10,20],[30,40]])
print(x+y)#矩阵的加法
矩阵的乘法
矩阵的转置
数学中的符号与运算
求最大化参数:返回P(c)值最大时对应的C的值。
求最值:
微分法则
范数:L1范数,L2范数,L无穷范数
微分定义:在数学中漫威粉是对函数的局部变化率的一种线性描述。
单变量微积分:导数: 微分定义 :
微分的基本法则,
导数公式
复合函数的求导法则
统计学和概率论基础
概率定义:是一个在0到1之间的实数,是对随机事件发生的可能性的度量。
概率说明:概率,通常是指一个具有不确定性的时间发生的可能性。-不可能事件,-必然事件。
古典概率(事前概率):
在给定条件下:
1)实验的全部可能结果只有有限个,且两两不相容。
2)事件发生的概率是相等的。
离散概率:知道样本空间和事件域,抛硬币和明天是否下雨都是离散概率事件。与之对应的是连续事件概率。
条件概率
条件概率:在已知事件A发生的情况下,事件B发生的概率,记为:
事件交集:事件A与事件B同时发生的概率,记为:
条件概率不为0的前提是,事件之间有交集。
条件概率的计算公式:
全概率公式
全概率公式:如果事件A1,A2,A3,...An构成一个完备事件组,即它们两两互不相容,其和为全集:
例子:
随机变量的定义:随机变量并不是变量,他们实际上是将(样本空间中的)结果映射到真值的函数。
联合分布的定义:
两个及以上随机变量组成的随机变量的概率分布叫做联合分布。
用或者来表示,X取值为a且Y取值为b时的概率。
用P(X,Y)来表示它们的联合分布。
边缘分布:边缘分布是指一个随机变量对于其自身的概率分布,为了得到一个随机变量的边缘分布,我们将该分布中所有其他变量相加:
条件分布:对于二位变量(X,Y)可以考虑在其中一个随机变量取得(可能的)固定值的条件下,另一随机变量的概率分布,这样得到的X或Y的概率分布叫做条件概率分布,简称条件分布。条件分布为概率论中用于探讨不确定性的关键工具之一,它明确了在另一随机变量已知的情况下(或者通俗来说,当已知事件为真时)的某一随机变量的分布。
数学期望:E(X)
数学方差:Var(X)用于描述离散程度,方差的算术平方根称为该随机变量的标准差。
优化方法基础
范数
拉格朗日乘子法和KKT条件