第一部分:绪论
-
授人以鱼不如授人以渔。本部分从意义和作用出发,给出相应的学习方法和与理论配套的编程练习。
第二部分:基本原理
-
深谙其理,才能灵活应变。本部分带大家了解什么是机器学习、机器如何自己学习,以及机器学习三要素:数据、模型、算法之间的关系。
-
模型是机器学习的核心,那么模型是怎么得到的呢?本部分也将讲解模型的获取(训练)和评价(验证/测试)过程,相应数据集合的划分以及具体的评价指标。
-
这部分知识和后面讲述的具体模型结合起来,就可以实践了!
第三部分:有监督学习 I
- 抓住关键,个个击破。本部分重在详细讲解有监督学习中经典的线性回归、朴素贝叶斯、逻辑回归、决策树模型。这几个模型不仅基础、经典、常用,而且数学工具特别简单。
第四部分:有监督学习 II
- 百尺竿头,更上一层楼。本部分主要讲述支持向量机、支持向量回归、隐马尔科夫和条件随机场模型,从支持向量机开始,数学工具的需求较之前上了一个台阶,难度明显加大。
第五部分:无监督学习
- 无须标注,方便运行。本部分重在讲解无监督学习中的聚类、高斯混合及主成分分析等模型。训练数据无须标注,方便在各种数据上随时进行尝试,是这些模型的特征。在现实中,经常用来作为有监督的辅助手段。
第六部分:深度学习
- 超越自我,实现蜕变。本部分重在讲解深度学习基本原理、深度学习与机器学习的关联与衔接、以及深度学习目前的应用领域,为读者下一步学习“深度学习”奠定基础。