机器学习入门笔记(一)

机器学习基本概念

机器学习与数据挖掘息息相关,可用人脑模拟机器学习的过程。人类通过眼睛捕捉外界信息在大脑中形成图像信息,在大脑加工后再具体反映至具体动作。而当今的深度学习是早期的神经网络,类比人脑处理过程,其简单流程可分为:输入层 —> 隐藏层 —> 输出层 。

机器学习可大致分为监督学习与无监督学习两大类:
监督学习: 一般适用于分类问题(即所研究的数据带有标签)
无监督学习:一般适用于聚类问题(数据不带标签,例如散点数据,可实现回归预测等)

常见的三类问题:回顾、分类、聚类
回归问题:连续型数据。一般可用于预测数据等。
分类问题:类别型数据,并且数据类型已知。
聚类问题:类别型数据,并且数据类型未知。

如图为聚类问题的一种情况:
Unsupervised
在具体数据处理过程中一般分为训练集验证集测试集
而在实际过程中,往往将验证集与测试集统一合为测试集,因此最终只有训练集测试集。训练集用于训练模型,测试集用于测试训练所得的模型。

一元线性回归

一元线性回归问题中,数据最终在坐标轴上可近似用一条直线拟合。将该直线设为: h θ ( x ) h_θ(x) hθ(x)= θ 0 θ_{0} θ0+ θ 1 θ_{1} θ1x 也将该直线称为回归线。
为了衡量拟合直线的优劣,在该情况下引入代价函数

J( θ \theta θ 0 _{0} 0, θ \theta θ 1 _{1} 1)= 1 2 m \frac{1}{2m} 2m1 ∑ i = 1 m \sum_{i=1}^{m} i=1m ( y i − h θ ( x i ) ) 2 (y^{i}-h_\theta(x^{i}))^{2} (yihθ(xi))2

即J( θ 0 , θ 1 \theta_{0},\theta_{1} θ0,θ1)为该一元线性函数的代价函数,当J的值最小时的 θ 0 , θ 1 \theta_{0},\theta_{1} θ0,θ1即为符合的截距与斜率。(该方法为最小二乘法)
最小二乘法
而线性相关的强度用相关系数衡量:
r x y r_{xy} rxy= ∑ i = 1 m ( x i − x ‾ ) ( y i − y ‾ ) ∑ i = 1 m ( x i − x ‾ ) 2 ( y i − y ‾ ) 2 \frac{\sum_{i=1}^{m} (x_{i}-\overline{x})(y_{i}-\overline{y})}{\sum_{i=1}^{m}(x_{i}-\overline{x})^{2}(y_{i}-\overline{y})^{2}} i=1m(xix)2(yiy)2i=1m(xix)(yiy)

梯度下降法

梯度下降法基本步骤为:
(1)初始化 θ 0 \theta_{0} θ0 θ 1 \theta_{1} θ1的值,并确定迭代步数与步长(学习率)。
(2)对该位置进行求导,得到该点的梯度。
(3)用公式更新 θ 0 \theta_{0} θ0 θ 1 \theta_{1} θ1
(4)迭代上述步骤。

同步更新:
t e m p 0 temp_{0} temp0= θ 0 \theta_{0} θ0- α \alpha α ∂ ∂ θ 0 \frac{\partial}{\partial\theta_{0}} θ0 J( θ 0 , θ 1 \theta_{0},\theta_{1} θ0,θ1)
t e m p 1 temp_{1} temp1= θ 1 \theta_{1} θ1- α \alpha α ∂ ∂ θ 1 \frac{\partial}{\partial\theta_{1}} θ1 J( θ 0 , θ 1 \theta_{0},\theta_{1} θ0,θ1)
θ 0 = t e m p 0 ; θ 1 = t e m p 1 \theta_{0}=temp_{0} ; \theta_{1}=temp_{1} θ0=temp0;θ1=temp1

其中 α \alpha α为步长(学习率),为正值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值