YbtOJ 生日欢唱(dp+贪心转移)

请添加图片描述


状态设置&朴素转移

通过看看样例,基本有一个30pts的dp。
设状态 f i , j f_{i,j} fi,j 表示第一行的第 i i i 个和第二行的第 j j j 个强制匹配的最大“愉悦值”。
在不考虑前移时
f i , j = max ⁡ ( f i − 1 , j − 1 ) + a i × b j f_{i,j}=\max(f_{i-1,j-1})+a_i\times b_j fi,j=max(fi1,j1)+ai×bj
在考虑前移情况下,可以得出转移方程。其中 k a ka ka 表示第一行前移, k b kb kb 表示第二行前移, s u m A i sumA_i sumAi表示第一行前缀和, s u m B i sumB_i sumBi表示第二行前缀和。
f i , j = max ⁡ ( f i − k a , j − k b − S u m ) + a i × b j f_{i,j}=\max(f_{i-ka,j-kb}-Sum)+a_i\times b_j fi,j=max(fika,jkbSum)+ai×bj
其中 S u m = ( s u m A i − 1 − s u m A i − k a ) 2 + ( s u m B j − 1 − s u m B i − k b ) 2 Sum=(sumA_{i-1}-sumA_{i-ka})^2+(sumB_{j-1}-sumB_{i-kb})^2 Sum=(sumAi1sumAika)2+(sumBj1sumBikb)2
此时要 同时 同时 同时枚举 k a ka ka k b kb kb ,总时间复杂度 O ( n 4 ) O(n^4) O(n4),30pts,过于无脑暴力。

由于太菜了,然后我就不汇了,于是去看f神的提姐


优化

贪心地想,对于同时前移两行时,同时前移的部分对答案没有贡献,显然不优。所以答案一定不会是同时前移,也就是说,只要 分别 分别 分别枚举 k a ka ka k b kb kb 就好了,总时间复杂度 O ( n 3 ) O(n^3) O(n3)
所以,本题用贪心的思想排除无效的dp转移,从而降低时间复杂度。

实现细节

  • 由于存在两行的第 n n n 对并不匹配情况的答案(最后有剩余的人),所以要添加一个虚对,最终答案 f n + 1 , n + 1 f_{n+1,n+1} fn+1,n+1
  n++,a[n]=b[n]=0;
  sumA[n]=sumA[n-1];sumB[n]=sumB[n-1];
  • 由于 f 0 , i f_{0,i} f0,i f i , 0 f_{i,0} fi,0 在本题无意义,所以不能从这个状态转移,即赋成-INF。
  for(int i=1;i<=n;i++) f[0][i]=f[i][0]=FINF;
  • 由于任何状态都是由 f 0 , 0 f_{0,0} f0,0 转移出去的,所以 f 0 , 0 f_{0,0} f0,0不能赋成-INF

c o d e code code

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn=5e2+10;
const int FINF=-2e11;
int n,a[maxn],b[maxn],f[maxn][maxn],sumA[maxn],sumB[maxn];
signed main()
{
    cin>>n;
    for(int i=1;i<=n;i++) cin>>a[i],sumA[i]=sumA[i-1]+a[i];
    for(int i=1;i<=n;i++) cin>>b[i],sumB[i]=sumB[i-1]+b[i];
    n++,a[n]=b[n]=0;
    sumA[n]=sumA[n-1];sumB[n]=sumB[n-1];
    for(int i=1;i<=n;i++) f[0][i]=f[i][0]=FINF;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        {
            for(int ka=1;ka<=i;ka++)
            {
                int Sum=(sumA[i-1]-sumA[i-ka])*(sumA[i-1]-sumA[i-ka]);
                f[i][j]=max(f[i][j],f[i-ka][j-1]-Sum+a[i]*b[j]);
            }
            for(int kb=1;kb<=j;kb++)
            {
                int Sum=(sumB[j-1]-sumB[j-kb])*(sumB[j-1]-sumB[j-kb]);
                f[i][j]=max(f[i][j],f[i-1][j-kb]-Sum+a[i]*b[j]);
            }
        }
    cout<<f[n][n]<<endl;
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值