去模糊
文章平均质量分 81
去模糊论文笔记
Nepethens
这个作者很懒,什么都没留下…
展开
-
【Deblurring by Realistic Blurring】阅读笔记
本文不同的是,它合成的模糊图片是向真实模糊图片靠近的模糊图片,也就是说,从神经网络的角度靠近了合成模糊图片与真实模糊图片的距离(现在想想,这一创新,直白来讲就是用神经网络合成模糊图片,之前模糊图片大都是根据估计的模糊核来生成)。为了使得生成的图片更加接近真实的图片,这里就提出了一种RBL损失达成这一目标,更具体的来讲,它是为了使得合成的模糊图片真实概率接近0.5,使得真实模糊图片也接近0.5,达到所谓的将0push到0.5,将1pull到0.5。不同的是,去掉了其中的BN层(增加计算量并且降低最终效果)原创 2022-09-28 15:26:56 · 470 阅读 · 0 评论 -
【Deep Semantic Face Deblurring】阅读笔记
未来的工作包括改进处理大的和不均匀的模糊核的性能,并减轻面部对齐的要求。从任务目标角度上讲,这部分任务是要训练一个网络,使得其能够对一张模糊图片中人脸的五官进行定位,将所属像素进行分割,和分割任务极像。的框架构建鉴别器,由于我们的目的就是要生成清晰图片,因此只要最好得到一个性能良好的生成器即可,因此只需要更新生成器网络部分,即仅需要生成器部分的损失。这一点的设计,首先是充分考虑了任务的需要,简化了问题,但就对人脸去模糊这一问题来说,应该不难想到,应该是首次提出了这种做法。就得到了响应关键点的损失。...原创 2022-08-31 14:58:57 · 954 阅读 · 0 评论 -
【Dynamic Scene Deblurring with Parameter Selective Sharing and Nested Skip Connections】阅读笔记
仔细考虑这个观点,这里说的参数一致更谨慎地来说应该是去模糊的过程是一致,而对特征提取这一块的参数应该没有特殊要求,特征提取模块能够适应不同尺度输入的图片,这无可厚非,因此,就出现了本文的参数选择性共享方案。所谓的变换模块实际上是有四个处理单元,每个处理单元中有两个卷积层,因此一个变换模块有8个卷积层,每一阶段中有一个特征提取层,即一个卷积层,两个变换模块,共16层。其具体实现的方式就是先用不共享参数的模块提取不同尺度的特征,然后运用共享参数的模块来对特征进行相同的从模糊到清晰的变换。原创 2022-09-08 12:52:23 · 223 阅读 · 0 评论 -
【DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks】阅读笔记
每个轨迹矢量是复值矢量,其对应于在连续域中跟随2D随机运动的对象的离散位置。轨迹生成是通过马尔可夫过程完成的,总结在算法1中。轨迹的下一个点的位置是基于先前的点速度和位置,高斯扰动,脉冲扰动和确定性惯性分量随机生成的。经核验,第三个池化层标号为27,前三层卷积层刚好是25(1),16(2),14(3)。限制所采取的强制裁剪进行改进,转成添加一项正则项,对权重进行惩罚,使得梯度维持在1附近。之间,采用的方法就是超出区间去边界的方法。的基础上改进,改进的地方就是对满足。的前15层网络的输出,再计算。...原创 2022-08-31 10:12:30 · 484 阅读 · 0 评论 -
【Learning a Discriminative Prior for Blind Image Deblurring】阅读笔记
CNNMAP。原创 2022-08-31 10:13:02 · 592 阅读 · 1 评论 -
【Unifying Motion Deblurring and Frame Interpolation with Events】阅读笔记
运动模糊视频去模糊兼插值原创 2022-08-10 16:33:05 · 1020 阅读 · 0 评论 -
【Human-Aware Motion Deblurring】阅读笔记
人类感知运动去模糊原创 2022-08-10 16:33:31 · 1291 阅读 · 0 评论 -
【Scale-recurrent Network for Deep Image Deblurring】阅读笔记
提出了一种网络架构。原创 2022-08-31 14:57:34 · 692 阅读 · 0 评论 -
【XYDeblur: Divide and Conquer for Single Image Deblurring】阅读笔记
在选用水平还是垂直方向作为参数也是有考究的,这里采用的学习水平方向特征的参数,原因在于水平方向上学习到的模糊信号更强(水平方向上相机可以旋转360度,竖直方向上很少有旋转360度的情况)。两种情况下唯一不同的就是学到的特征重建是水平方向和竖直方向,这样的操作可以强制两个解码器分享信息,分享除了轴线方向外的信息,也就是去模糊的信息,网络可以专注于消除模糊分量。更值得注意的是,本文提出的结构在整体上仍是一个残差学习的过程,以前的网络有在中间应用残差学习,但整体上仍是图像重建的过程。原创 2022-09-28 15:26:38 · 507 阅读 · 0 评论 -
【Deep Image Deblurring: A Survey】阅读笔记
图像去模糊是将输入的模糊图像,恢复成清晰的图像。模糊的种类可以分为:运动模糊、失焦模糊、高斯模糊和混合模糊。现实中多是运动模糊、失焦模糊和混合模糊。运动模糊又可以分为相机运动和物体运动两种模糊,其中物体运动造成的模糊,静止的背景往往认为是清晰的。与此同时,构建出模糊核。...原创 2022-08-10 16:32:07 · 1306 阅读 · 0 评论 -
【Deep Stacked Hierarchical Multi-patch Network for Image Deblurring】阅读笔记
本篇论文在归纳时,仍将当前基于CNN的去模糊方法归纳为两种形式,多尺度和尺度递归。认为这两种方案是将”从粗到精”方案扩展到深度CNN场景。原创 2022-09-08 12:52:43 · 407 阅读 · 0 评论 -
【Rethinking Coarse-to-Fine Approach in Single Image Deblurring】阅读笔记
geometric self-ensemble指测试时,把图像90度旋转以及翻转,总共有8种不同的图像,分别进网络然后变换回原始位置,8张图像再取平均。这样可以使测试结果有略微提高,详见论文。原创 2023-03-17 23:25:51 · 321 阅读 · 0 评论