m 序列性质的简单证明

前言

上课用的 Simon Haykin 《通信系统》论述了 m 序列的性质,没有进行证明。这里参考樊昌信《通信原理》,对 m 序列性质的证明作简要说明。

证明

反馈逻辑完全由模 2 加法器构成时,该反馈移位寄存器被称为是线性的。m 序列为具有 m 个触发器的线性反馈移位寄存器,其周期为 2m - 1(不存在所有触发器状态都为零的状态,因为此时反馈也为零,输出全为零)。

均衡性

在 m 序列的每个周期里,1 的数目总是比 0 的数目多 1 个。

2m - 1 个状态中有 2m/2 个奇数表示的状态,2m/2 - 1 个偶数表示的状态。奇数最低一位为 1,偶数最低一位为 0,则输出序列 1 数目比 0 数目多 1 个。

游程分布

“游程”是指在一个序列周期中,同样符号(1 或 0)组成的子序列。m 序列共有 2m-1 个游程。长度为 k k k 的游程数目占游程总数的 2-k ,其中 1 ≤ k ≤ m − 1 1\leq k\leq m - 1 1km1。在长度为 k k k 的游程中 ( 1 ≤ k ≤ m − 2 1\leq k\leq m - 2 1km2),连“1”的游程和连“0”的游程各占一半。

1 ≤ k ≤ m − 2 1 \leq k \leq m - 2 1km2
先考虑长度为 k 的连“1”游程,此时它的两端为“0” 。根据排列组合原理,此时 m 长序列的其余元素可能的数目为 2m-k-2。连“0”游程同理,所以 k k k 长游程数目为 2m-k-1

k = m − 1 k = m - 1 k=m1
仅有一个连“0”游程。长为 m - 1 的连“1”状态不能变成连“1”游程,因为在 m 序列一个周期中,每个状态只能出现一次,若出现了 k = m − 1 k = m - 1 k=m1 的连“1”游程,考虑到寄存器的逐级移位性质,则不可能出现长为 m 的连“1”状态。

k = m k = m k=m
仅有一个连“1”游程。

k > m k > m k>m
此时反馈和寄存器状态同为 0 或 1,输出将全为 0 或 1,故不存在 k > m k > m k>m 的游程。

等比求和公式可知,游程总数为 2m-1 。长为 k ( 1 ≤ k ≤ m − 1 ) k(1 \leq k \leq m - 1) k(1km1) 的游程占游程总数的 2-k

相关性

m 序列的自相关函数是周期性的二值函数。

首先要了解 m 序列的移位相加特性,即一个m 序列 M p M_{p} Mp 与其经过任意次移位产生的另一个不同序列 M r M_{r} Mr 模 2 相加,得到的仍然是 M p M_{p} Mp 的某次延迟移位序列 M s M_{s} Ms

a n + a n + r = c 1 ( a n − 1 + a n + r − 1 ) + ⋯ + c n ( a 0 + a r ) a_{n}+a_{n+r}=c_{1}(a_{n-1}+a_{n+r-1})+\dots+c_{n}(a_{0}+a_{r}) an+an+r=c1(an1+an+r1)++cn(a0+ar)

用递推方程表示输入状态,模 2 加相当于按位异或,两初始状态模 2 加后得到的是一个非全零初始状态,反馈线接法不变,则得到某延迟移位序列。

二进制符号 0 和 1 分别用 -1 和 +1 电平表示,N = 2m - 1,则 m 序列自相关函数可以写为

R ( k ) = [ a i ⊕ a i + j = 0 ] 的 数 目 − [ a i ⊕ a i + j = 1 ] 的 数 目 N R(k)=\frac{[a_{i}\oplus a_{i+j}=0]的数目-[a_{i}\oplus a_{i+j}=1]的数目}{N} R(k)=N[aiai+j=0][aiai+j=1]

由移位相加特性可知, a i ⊕ a i + j a_{i}\oplus a_{i+j} aiai+j 是某延迟移位序列,又 m 序列一个周期中 1 的数目比 0 的数目多 1 个,则上式分子为 -1。

R ( k ) = { 1 k=0 − 1 N k=1,2, … ,N-1 R(k)= \begin{cases} 1& \text{k=0}\\ -\frac{1}{N}& \text{k=1,2,\dots,N-1} \end{cases} R(k)={1N1k=0k=1,2,,N-1

手算线性卷积时,一般取波形的跳变点进行计算,然后连线(因为跳变点间卷积值线性变化)。同理,自相关函数用周期性连续函数如下表示。 T c T_{c} Tc 为 m 序列中分配给符号 0 或 1 的持续时间。

R ( τ ) = { 1 − N + 1 N T c ∣ τ − i N T c ∣ 0 ≤ ∣ τ − i N T c ∣ ≤ T c , i = 0 , 1 , 2 , … − 1 N otherwise R(\tau)= \begin{cases} 1-\frac{N+1}{NT_{c}}|\tau -iNT_{c}|& 0\leq |\tau -iNT_{c}| \leq T_{c},i=0,1,2,\dots\\ -\frac{1}{N}& \text{otherwise} \end{cases} R(τ)={1NTcN+1τiNTcN10τiNTcTc,i=0,1,2,otherwise

樊昌信《通信原理 第7版》
Simon Haykin 《Communication Systems 4th Edition》

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值