POJ 2392 dp

题意

传送门 POJ 2392

多重部分和问题,由于每一类都有上界,要先按上界进行排序,保证 dp 当前种类时能考虑到所有可能情况。

d p [ i + 1 ] [ j ] : = 用 前 i 种 数 加 和 得 到 j 时 第 i 种 数 最 多 能 剩 余 多 少 个 ( 不 能 加 和 得 到 j 的 情 况 下 为 − 1 ) dp[i+1][j]:=用前i种数加和得到j时第i种数最多能剩余多少个(不能加和得到j的情况下为-1) dp[i+1][j]:=ijij1

实现上重复利用数组,最终满足 d p [ i ] ≥ 0 dp[i]\geq 0 dp[i]0 的最大 i i i 即答案。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#define min(a,b)    (((a) < (b)) ? (a) : (b))
#define max(a,b)    (((a) > (b)) ? (a) : (b))
#define abs(x)    ((x) < 0 ? -(x) : (x))
#define INF 0x3f3f3f3f
#define delta 0.85
#define eps 1e-3
#define PI 3.14159265358979323846
#define MAX_K 400
#define MAX_A 40000
using namespace std;
struct block{
	int h, a, c;
}blk[MAX_K];
int K;
int dp[MAX_A];

bool cmp(const block& a, const block& b){
	return a.a < b.a;
}

int main(){
	while(~scanf("%d", &K)){
		memset(dp, -1, sizeof(dp));
		for(int i = 0; i < K; i++) scanf("%d%d%d", &blk[i].h, &blk[i].a, &blk[i].c);
		sort(blk, blk + K, cmp);
		dp[0] = 0;
		for(int i = 0; i < K; i++){
			block &b = blk[i];
			for(int j = 0; j <= blk[i].a; j++){
				if(dp[j] >= 0) dp[j] = b.c;
				else if(j < b.h || dp[j - b.h] <= 0) dp[j] = -1;
				else dp[j] = dp[j - b.h] - 1;
			}
		}
		int res;
		for(int i = blk[K - 1].a; i >= 0; i--){
			if(dp[i] >= 0){
				res = i;
				break;
			}
		}
		printf("%d\n", res);
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值