POJ 3281 Dinic 最大流

题意

传送门 POJ 3281

题解

参考白书做法。求牛和食物及饮料的最大匹配,使用 Dinic 算法。牛拆成 2 个节点,连一条容量为 1 的边;食物、饮料分别向牛的不同节点连容量为 1 的边;保证每头牛最多只匹配一对食物及饮料。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
#define min(a,b)    (((a) < (b)) ? (a) : (b))
#define max(a,b)    (((a) > (b)) ? (a) : (b))
#define abs(x)    ((x) < 0 ? -(x) : (x))
#define INF 0x3f3f3f3f
#define delta 0.85
#define eps 1e-5
#define PI 3.14159265358979323846
using namespace std;

#define MAX_V 420
struct edge{
	int to, cap, rev;
	edge(int to, int cap, int rev) : to(to), cap(cap), rev(rev){}
};

vector<edge> G[MAX_V];
int level[MAX_V], iter[MAX_V];

void add_edge(int from, int to, int cap){
	G[from].push_back(edge(to, cap, G[to].size()));
	G[to].push_back(edge(from, 0, G[from].size() - 1));
}

void bfs(int s){
	memset(level, -1, sizeof(level));
	queue<int> que;
	level[s] = 0;
	que.push(s);
	while(!que.empty()){
		int v = que.front(); que.pop();
		for(int i = 0; i < G[v].size(); i++){
			edge &e = G[v][i];
			if(e.cap > 0 && level[e.to] < 0){
				level[e.to] = level[v] + 1;
				que.push(e.to);
			}
		}
	}
}

int dfs(int v, int t, int f){
	if(v == t) return f;
	for(int &i = iter[v]; i < G[v].size(); i++){
		edge &e = G[v][i];
		if(e.cap > 0 && level[v] < level[e.to]){
			int d = dfs(e.to, t, min(f, e.cap));
			if(d > 0){
				e.cap -= d;
				G[e.to][e.rev].cap += d;
				return d;
			}
		}
	}
	return 0;
}

int max_flow(int s, int t){
	int flow = 0;
	for(;;){
		bfs(s);
		if(level[t] < 0) return flow;
		memset(iter, 0, sizeof(iter));
		int f;
		while((f = dfs(s, t, INF)) > 0){
			flow += f;
		}
	}
}

#define MAX_N 100
#define MAX_F 100
#define MAX_D 100
int N, F, D;
bool likeF[MAX_N][MAX_F], likeD[MAX_N][MAX_F];

void solve(){
	int N2 = N * 2, s = N * 2 + F + D, t = s + 1;
	for(int i = 0; i < F; i++) add_edge(s, N2 + i, 1);
	for(int i = 0; i < D; i++) add_edge(N2 + F + i, t, 1);
	for(int i = 0; i <  N; i++){
		add_edge(i, N + i, 1);
		for(int j = 0; j < F; j++) if(likeF[i][j]) add_edge(N2 + j, i, 1);
		for(int j = 0; j < D; j++) if(likeD[i][j]) add_edge(N + i, N2 + F + j, 1);
	}
	printf("%d\n", max_flow(s, t));
}

int main(){
	while(~scanf("%d%d%d", &N, &F, &D)){
		memset(likeD, 0, sizeof(likeD));
		memset(likeF, 0, sizeof(likeF));
		for(int v = 0; v < N * 2 + F + D + 2; v++) G[v].clear();
		for(int i = 0; i < N; i++){
			int f, d;
			scanf("%d%d", &f, &d);
			for(int j = 0; j < f; j++){
				int f2;
				scanf("%d", &f2);
				likeF[i][f2 - 1] = 1;
			}
			for(int j = 0; j < d; j++){
				int d2;
				scanf("%d", &d2);
				likeD[i][d2 - 1] = 1;
			}
		}
		solve();
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值