POJ 3155 最大密度子图

题意

传送门 POJ 3155

题解
算法思路

参考《最小割模型在信息学竞赛中的应用》。分数规划,求满足条件的 x x x 最大值

∣ E ∣ ∣ V ∣ ≥ x \frac{|E|}{|V|}\geq x VEx

∣ E ∣ |E| E 为子图边数, ∣ V ∣ |V| V 为子图点数,不等式左边为图的密度。不同子图 密度差 不小于 1 / ∣ V ∣ 2 1/|V|^2 1/V2,考虑到多边形点与边的关系,图密度的 二分范围 [ 1 / 2 , ( ∣ V ∣ − 1 ) / 2 ] [1/2,(|V|-1)/2] [1/2,(V1)/2]。为了对应最小割模型,上式取负后问题转化为

m i n { x × ∑ v ∈ V w v − ∑ e ∈ E w e } min\{x\times \sum\limits_{v\in V}w_{v}-\sum\limits_{e\in E}w_{e}\} min{x×vVwveEwe}

这里求的是边数,边权为 1 1 1。对于与点相连的边集,采用求 补集 的思想

∑ e ∈ E w e = ∑ v ∈ V d v / 2 − C [ V , V ′ ] \sum\limits_{e\in E}w_{e}=\sum_{v\in V} d_{v}/2-C[V,V'] eEwe=vVdv/2C[V,V]

d v d_{v} dv 为点的 ,即作为端点的边的权求和(这里是边的数量), V ′ V' V V V V 的补集。此时

2 × m i n { x × ∑ v ∈ V w v − ∑ e ∈ E w e } = ∑ v ∈ V ( 2 × x − d v ) + 2 × C [ V , V ′ ] 2\times min\{x\times \sum\limits_{v\in V}w_{v}-\sum\limits_{e\in E}w_{e}\}=\sum_{v\in V}(2\times x-d_{v})+2\times C[V,V'] 2×min{x×vVwveEwe}=vV(2×xdv)+2×C[V,V]

对于

∑ v ∈ V ( 2 × x − d v ) \sum_{v\in V}(2\times x-d_{v}) vV(2×xdv)

假设 V V V 为包含源点的点集 s s s,考虑到可能出现 负权值 的边,边权值要加上一个足够大的值 i n f inf inf,则每一个顶点向汇点 t t t 连一条容量为 i n f + 2 × x − d v inf+2\times x-d_{v} inf+2×xdv 的边;对应地,源点 s s s 向每一个顶点连一条容量为 i n f inf inf 的边。对于

2 × C [ V , V ′ ] 2\times C[V,V'] 2×C[V,V]

则对于无向图的每一条边的端点,连两条容量为 1 1 1 的有向边。设最大密度为 W W W

W = ( ∣ V ∣ × i n f − m i n c u t ) / 2 W=(|V|\times inf-mincut)/2 W=(V×infmincut)/2

代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
#define min(a,b)    (((a) < (b)) ? (a) : (b))
#define max(a,b)    (((a) > (b)) ? (a) : (b))
#define abs(x)    ((x) < 0 ? -(x) : (x))
#define INF 0x3f3f3f3f
#define delta 0.85
#define eps 1e-10
#define PI 3.14159265358979323846
using namespace std;

typedef double cap_type;
#define MAX_V 105
struct edge{
	int to, rev;
	cap_type cap;
	edge(int to, cap_type cap, int rev) : to(to), cap(cap), rev(rev){}
};

vector<edge> G[MAX_V];
int level[MAX_V], iter[MAX_V];

void add_edge(int from, int to, cap_type cap){
	G[from].push_back(edge(to, cap, G[to].size()));
	G[to].push_back(edge(from, 0, G[from].size() - 1));
}

void bfs(int s){
	memset(level, -1, sizeof(level));
	queue<int> que;
	level[s] = 0;
	que.push(s);
	while(!que.empty()){
		int v = que.front(); que.pop();
		for(int i = 0; i < G[v].size(); i++){
			edge &e = G[v][i];
			if(e.cap > eps && level[e.to] < 0){
				level[e.to] = level[v] + 1;
				que.push(e.to);
			}
		}
	}
}

cap_type dfs(int v, int t, cap_type f){
	if(v == t) return f;
	for(int &i = iter[v]; i < G[v].size(); i++){
		edge &e = G[v][i];
		if(e.cap > eps && level[v] < level[e.to]){
			cap_type d = dfs(e.to, t, min(f, e.cap));
			if(d > eps){
				e.cap -= d;
				G[e.to][e.rev].cap += d;
				return d;
			}
		}
	}
	return 0;
}

cap_type max_flow(int s, int t){
	cap_type flow = 0;
	for(;;){
		bfs(s);
		if(level[t] < 0) return flow;
		memset(iter, 0, sizeof(iter));
		cap_type f;
		while((f = dfs(s, t, INF)) > eps){
			flow += f;
		}
	}
}

#define MAX_N 105
#define MAX_M 1005
int N, M;
int a[MAX_M], b[MAX_M];

double d[MAX_N];
int cnt;
bool used[MAX_N];
int res[MAX_N];

void dfs(int u){
	used[u] = 1;
	if(u < N) res[cnt++] = u + 1;
	for(int i = 0; i < G[u].size(); i++){
		edge &e = G[u][i];
		if(e.cap > eps && !used[e.to]) dfs(e.to);
	}
}

bool C(double x){
	// 最大密度子图建图
	int s = N, t = s + 1, V = t + 1;
	double inf = M;
	for(int v = 0; v < V; v++) G[v].clear();
	for(int i = 0; i < N; i++){
		add_edge(s, i, inf);
		add_edge(i, t, inf + 2 * x - d[i]);
	}
	for(int i = 0; i < M; i++){
		add_edge(a[i], b[i], 1);
		add_edge(b[i], a[i], 1);
	}
	return inf * N - max_flow(s, t) > eps;
}

void solve(){
	// 特判无边情况
	if(M == 0){
		if(N > 0) printf("1\n1\n");
		return;
	}
	memset(d, 0, sizeof(d));
	// 计算点的度
	for(int i = 0; i < M; i++) ++d[a[i]], ++d[b[i]];
	double lb = 1 / 2, ub = (N - 1) / 2, ep = 1.0 / N / N;
	while(ub - lb > ep){
		double mid = (ub + lb) / 2;
		if(C(mid)) lb = mid;
		else ub = mid;
	}
	memset(used, 0, sizeof(used));
	// 求子图节点
	C(lb);
	cnt = 0;
	dfs(N);
	sort(res, res + cnt);
	printf("%d\n", cnt);
	for(int i = 0; i < cnt; i++) printf("%d\n", res[i]);
}

int main(){
	while(~scanf("%d%d", &N, &M)){
		for(int i = 0; i < M; i++){
			scanf("%d%d", a + i, b + i);
			--a[i], --b[i];
		}
		solve();
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值