定义
~~~~ 一张无向图 G = ( V , E ) G=(V,E) G=(V,E)的最大密度子图定义为该无向图的一个子图 G 0 = ( V 0 ϵ V , E 0 ϵ E ) G_0=(V_0\epsilon V,E_0\epsilon E ) G0=(V0ϵV,E0ϵE),满足该图的 ∣ E 0 ∣ ∣ V 0 ∣ \frac{|E_0|}{| V_0 ~|} ∣V0 ∣∣E0∣最大。
方法
- 因为涉及分数问题,我们考虑 01 01 01分数规划。枚举一个答案 k k k,判断是否存在一个子图其密度 > = k >=k >=k。即 ∣ E 0 ∣ − ∣ V 0 ∣ ∗ k > = 0 |E_0|-|V_0|*k>=0 ∣E0∣−∣V0∣∗k>=0。考虑一条边会对我们产生 1 1 1的贡献,这条边两端的点会对我们产生负权的贡献。因此,把每条边当做一个正权点,每条边的端点当做负权点。这时,问题就转化为了最大权闭合子图问题,跑出答案判断其是否大于等于 0 0 0即可。
优化
- 上面所述方法建图,复杂度有点大。还有更优的做法,暂时先咕着。