POJ 2391 Floyd-Warshall + 二分 + Dinic

题意

传送门 POJ 2391

题解

F l o y d − W a r s h a l l Floyd-Warshall FloydWarshall 求出任意两点间的最短路,二分所需的最短时间。

每次二分重新建图,设源点、汇点分别为 s , t s,t s,t,当前二分值为 m i d mid mid,每一块土地当前的牛数量为 f i e l d [ i ] field[i] field[i],每一块土地上的避难处可容纳的牛的数量为 s h e l t e r [ i ] shelter[i] shelter[i],则从 s s s 向每一块土地(标记为 1 − F 1-F 1F)连一条容量为 f i e l d [ i ] field[i] field[i] 的边,从 t t t 向每一个避难处(标记为 F + 1 − F × 2 F+1-F\times 2 F+1F×2)连一条容量为 s h e l t e r [ i ] shelter[i] shelter[i] 的边,对于土地 i i i 与土地 j j j 的最短路小于等于 m i d mid mid 的情况,从土地 i i i 向土地 j j j 上的避难所连一条容量为 i n f inf inf 的边。

若最大流为牛的总数,则收缩上界;若所有边都在图中而最大流小于牛的总数,则判无解;对于避难处容量小于牛的总数的情况,可直接判无解。

#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
using namespace std;
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))

#define INF 0x3f3f3f3f
#define MAX_V 410
typedef int capType;
struct edge
{
    int to, rev;
    capType cap;
    edge(int to, int rev, capType cap) : to(to), rev(rev), cap(cap) {}
};
int V;
vector<edge> G[MAX_V];
int level[MAX_V], iter[MAX_V];

void add_edge(int from, int to, capType cap)
{
    G[from].push_back(edge(to, G[to].size(), cap));
    G[to].push_back(edge(from, G[from].size() - 1, 0));
}

void bfs(int s)
{
    memset(level, -1, sizeof(level));
    queue<int> que;
    level[s] = 0;
    que.push(s);
    while (!que.empty())
    {
        int v = que.front();
        que.pop();
        for (int i = 0; i < G[v].size(); i++)
        {
            edge &e = G[v][i];
            if (e.cap > 0 && level[e.to] < 0)
            {
                level[e.to] = level[v] + 1;
                que.push(e.to);
            }
        }
    }
}

capType dfs(int v, int t, capType f)
{
    if (v == t) return f;
    for (int &i = iter[v]; i < G[v].size(); i++)
    {
        edge &e = G[v][i];
        if (e.cap > 0 && level[v] < level[e.to])
        {
            capType d = dfs(e.to, t, min(f, e.cap));
            if (d > 0)
            {
                e.cap -= d;
                G[e.to][e.rev].cap += d;
                return d;
            }
        }
    }
    return 0;
}

capType max_flow(int s, int t)
{
    capType flow = 0;
    for (;;)
    {
        bfs(s);
        if (level[t] < 0)
            return flow;
        memset(iter, 0, sizeof(iter));
        capType f;
        while ((f = dfs(s, t, INF)) > 0)
        {
            flow += f;
        }
    }
}

void clear_graph()
{
    for (int v = 0; v < V; v++) G[v].clear();
}

typedef long long ll;
#define maxf 205
#define inf 0x3f3f3f3f3f3f3f3f
int F, P, nf, ns;
int field[maxf], shelter[maxf];
ll maxd, dp[maxf][maxf];

void floyd()
{
    maxd = 0;
    for (int k = 1; k <= F; k++)
    {
        for (int i = 1; i <= F; i++)
        {
            for (int j = 1; j <= F; j++)
            {
                dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]);
            }
        }
    }
    for (int i = 1; i <= F; i++)
    {
        for (int j = 1; j <= F; j++)
        {
            if (dp[i][j] != inf) maxd = max(maxd, dp[i][j]);
        }
    }
}

void solve()
{
    int s = 0, t = F * 2 + 1;
    V = t + 1;
    floyd();
    ll lb = -1, ub = maxd + 1;
    while (ub - lb > 1)
    {
        ll mid = (ub + lb) >> 1;
        clear_graph();
        for (int i = 1; i <= F; i++)
        {
            add_edge(i, F + i, INF);
            for (int j = i + 1; j <= F; j++)
            {
                if (dp[i][j] > mid) continue;
                add_edge(i, F + j, INF);
                add_edge(j, F + i, INF);
            }
        }
        for (int i = 1; i <= F; i++)
        {
            add_edge(s, i, field[i]);
            add_edge(F + i, t, shelter[i]);
        }
        if (max_flow(s, t) == nf) ub = mid; 
        else lb = mid;
    }
    printf("%lld\n", ub > maxd ? -1 : ub);
}

int main()
{
    while (~scanf("%d%d", &F, &P))
    {
        memset(dp, 0x3f, sizeof(dp));
        nf = 0, ns = 0;
        for (int i = 1; i <= F; i++)
        {
            dp[i][i] = 0;
            scanf("%d%d", field + i, shelter + i);
            nf += field[i], ns += shelter[i];
        }
        for (int i = 0; i < P; i++)
        {
            int u, v, d;
            scanf("%d%d%d", &u, &v, &d);
            dp[u][v] = dp[v][u] = min(d, dp[u][v]);
        }
        if (nf > ns)
        {
            puts("-1");
            continue;
        }
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值