LeeCode 5454 前缀和 + 暴力

题意

传送门 LeeCode 5454. 统计全 1 子矩形

题解
暴力

前缀和维护矩形区域内 1 1 1 的数量,枚举矩形的左上顶点与右下顶点,若矩形区域内 1 1 1 的求和等于矩形面积,则计入答案。当不可能出现全 1 1 1 矩形时,需要即时停止枚举;即固定某左上顶点枚举右下顶点时,右边界 m a t mat mat 出现 0 0 0 则收缩右下点的右边界,若下边界第一个位置出现 0 0 0 则枚举下一个左上顶点。

class Solution
{
#define maxn 155
public:
    int sum[maxn][maxn];
    int numSubmat(vector<vector<int>> &mat)
    {
        int n = mat.size(), m = mat[0].size();
        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < m; j++)
            {
                sum[i + 1][j + 1] = sum[i][j + 1] + sum[i + 1][j] - sum[i][j] + mat[i][j];
            }
        }
        int res = 0;
        for (int x1 = 1; x1 <= n; x1++)
        {
            for (int y1 = 1; y1 <= m; y1++)
            {
                for (int x2 = x1; x2 <= n; x2++)
                {
                    if (mat[x2 - 1][y1 - 1] == 0) break;
                    int limit = m;
                    for (int y2 = y1; y2 <= limit; y2++)
                    {
                        if (sum[x2][y2] - sum[x1 - 1][y2] - sum[x2][y1 - 1] + sum[x1 - 1][y1 - 1] == (x2 - x1 + 1) * (y2 - y1 + 1)) ++res;
                        else
                        {
                            limit = y2 - 1;
                            break;
                        }
                    }
                }
            }
        }
        return res;
    }
};
优化的暴力

考虑到固定左上顶点时,枚举的右下顶点一定是行连续的,那么对于每一行,用前缀和维护顶点右侧连续的 1 1 1 的个数即可,此数量即以此顶点为矩形左上顶点时,在这一行可枚举的右下顶点数量。复杂度由 O ( n 2 m 2 ) O(n^2m^2) O(n2m2) 降为 O ( n 2 m ) O(n^2m) O(n2m)

class Solution
{
#define maxn 155
public:
    int sum[maxn][maxn];
    int numSubmat(vector<vector<int>> &mat)
    {
        int n = mat.size(), m = mat[0].size();
        for (int i = n - 1; i >= 0; i--)
        {
            int s = 0;
            for (int j = m - 1; j >= 0; j--)
            {
                if (mat[i][j] == 0) s = 0;
                else ++s;
                sum[i][j] = s;
            }
        }
        int res = 0;
        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < m; j++)
            {
                int num = INT_MAX;
                for (int k = i; k < n; k++)
                {
                    num = min(num, sum[k][j]);
                    if (num == 0) break;
                    res += num;
                }
            }
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值