题意
传送门 NC 200211
题解
线性规划
设用 2 2 2 件材料 a a a 和 3 3 3 件材料 b b b 合成 n n n 件装备,用 4 4 4 件材料 a a a 和 1 1 1 件材料 b b b 合成 m m m 件装备。线性规划问题为
{ 2 n + 4 m ≤ x 3 n + m ≤ y n ≥ 0 m ≥ 0 \begin{cases} 2n+4m\leq x \\ 3n+m\leq y\\ n\geq 0 \\ m\geq 0\\ \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧2n+4m≤x3n+m≤yn≥0m≥0
求
m a x { n + m } max\{n+m\} max{n+m}
即求过满足约束条件的点的直线
m + n = k m+n=k m+n=k
的最大截距。观察直线围成的区间,则 k k k 取最大值时有 3 3 3 种可能,根据条件处理即可。
#include <bits/stdc++.h>
using namespace std;
int main()
{
int t;
scanf("%d", &t);
while (t--)
{
int x, y;
scanf("%d%d", &x, &y);
double x1 = x / 2.0, x2 = x / 4.0, y1 = y / 3.0, y2 = y;
if (x1 <= y1)
{
printf("%d\n", (int)x1);
}
else if (y2 <= x2)
{
printf("%d\n", (int)y2);
}
else
{
double x3 = (y - x / 4.0) * 2 / 5;
int a = floor(x3), b = ceil(x3);
printf("%d\n", max(a + (x - 2 * a) / 4, b + (y - 3 * b)));
}
}
return 0;
}
三分法
由线性规划的推导观察到 k k k 与变量 n n n 或 m m m 满足单调或单峰的性质;则三分求解。
#include <bits/stdc++.h>
using namespace std;
int x, y;
int calc(int n)
{
return n + min((x - 2 * n) / 4, y - 3 * n);
}
int main()
{
int t;
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &x, &y);
int lb = 0, ub = min(x / 2, y / 3);
while (ub - lb > 2)
{
int mid = (lb + ub) >> 1, mmid = (mid + ub) >> 1;
if (calc(mid) > calc(mmid))
ub = mmid;
else
lb = mid;
}
int res = 0;
for (int i = lb; i <= ub; i++)
res = max(res, calc(i));
printf("%d\n", res);
}
return 0;
}