NC 200211 线性规划 / 三分

题意

传送门 NC 200211

题解
线性规划

设用 2 2 2 件材料 a a a 3 3 3 件材料 b b b 合成 n n n 件装备,用 4 4 4 件材料 a a a 1 1 1 件材料 b b b 合成 m m m 件装备。线性规划问题为

{ 2 n + 4 m ≤ x 3 n + m ≤ y n ≥ 0 m ≥ 0 \begin{cases} 2n+4m\leq x \\ 3n+m\leq y\\ n\geq 0 \\ m\geq 0\\ \end{cases} 2n+4mx3n+myn0m0

m a x { n + m } max\{n+m\} max{n+m}

即求过满足约束条件的点的直线

m + n = k m+n=k m+n=k

的最大截距。观察直线围成的区间,则 k k k 取最大值时有 3 3 3 种可能,根据条件处理即可。

#include <bits/stdc++.h>
using namespace std;

int main()
{
    int t;
    scanf("%d", &t);
    while (t--)
    {
        int x, y;
        scanf("%d%d", &x, &y);
        double x1 = x / 2.0, x2 = x / 4.0, y1 = y / 3.0, y2 = y;
        if (x1 <= y1)
        {
            printf("%d\n", (int)x1);
        }
        else if (y2 <= x2)
        {
            printf("%d\n", (int)y2);
        }
        else
        {
            double x3 = (y - x / 4.0) * 2 / 5;
            int a = floor(x3), b = ceil(x3);
            printf("%d\n", max(a + (x - 2 * a) / 4, b + (y - 3 * b)));
        }
    }
    return 0;
}
三分法

由线性规划的推导观察到 k k k 与变量 n n n m m m 满足单调或单峰的性质;则三分求解。

#include <bits/stdc++.h>
using namespace std;
int x, y;

int calc(int n)
{
    return n + min((x - 2 * n) / 4, y - 3 * n);
}

int main()
{
    int t;
    scanf("%d", &t);
    while (t--)
    {
        scanf("%d%d", &x, &y);
        int lb = 0, ub = min(x / 2, y / 3);
        while (ub - lb > 2)
        {
            int mid = (lb + ub) >> 1, mmid = (mid + ub) >> 1;
            if (calc(mid) > calc(mmid))
                ub = mmid;
            else
                lb = mid;
        }
        int res = 0;
        for (int i = lb; i <= ub; i++)
            res = max(res, calc(i));
        printf("%d\n", res);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值