POJ 1088 DP

题意

传送门 POJ1088

题解

d p [ i ] [ j ] dp[i][j] dp[i][j] 代表 ( i , j ) (i,j) (i,j) 为终点的最长滑雪路径, ( i ′ , j ′ ) (i',j') (i,j) 代表路径上的前一滑雪地点
d p [ i ] [ j ] = m a x h [ i ] [ j ] < h [ i ′ ] [ j ′ ] { d p [ i ′ ] [ j ′ ] } + 1 dp[i][j]=max_{h[i][j]<h[i'][j']}\{dp[i'][j']\}+1 dp[i][j]=maxh[i][j]<h[i][j]{dp[i][j]}+1

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define maxn 105
int dx[4] = {0, 0, 1, -1}, dy[4] = {1, -1, 0, 0};
int R, C, h[maxn][maxn], dp[maxn][maxn];

int rec(int x, int y)
{
    if (dp[x][y] != -1)
        return dp[x][y];
    int res = 0;
    for (int i = 0; i < 4; i++)
    {
        int nx = x + dx[i], ny = y + dy[i];
        if (nx >= 0 && nx < R && ny >= 0 && ny < C && h[x][y] < h[nx][ny])
        {
            res = max(res, rec(nx, ny));
        }
    }
    return dp[x][y] = res + 1;
}

int main()
{
    while (~scanf("%d%d", &R, &C))
    {
        for (int i = 0; i < R; i++)
        {
            for (int j = 0; j < C; j++)
            {
                scanf("%d", &h[i][j]);
            }
        }
        memset(dp, -1, sizeof(dp));
        int res = 0;
        for (int i = 0; i < R; i++)
        {
            for (int j = 0; j < C; j++)
            {
                res = max(res, rec(i, j));
            }
        }
        printf("%d\n", res);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值