P3066 [USACO12DEC] DFS + 主席树

题意

传送门 P3066 [USACO12DEC]Running Away From the Barn

题解

考虑从根 D F S DFS DFS 将树表示为序列进行维护。设节点 i i i 到根节点的距离为 d [ i ] d[i] d[i],对于每个节点 u u u 只考虑以其为根的子树上的节点,对于满足条件的点对 ( u , v ) (u,v) (u,v),其 L C A LCA LCA u u u,那么 d [ v ] = d [ u ] + d i s t ( u , v ) d[v]=d[u]+dist(u,v) d[v]=d[u]+dist(u,v)。对于一颗子树,其节点的 D F S DFS DFS 序是连续的,则问题转化为求以各节点 u u u 为根的子树上满足 d [ v ] ≤ d [ u ] + t d[v]\leq d[u]+t d[v]d[u]+t 的节点数量;用主席树维护即可。

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
#define maxn 200005
#define tree_size 4000005
typedef long long ll;
struct edge
{
    int to;
    ll cost;
};
int N, cnt, L[maxn], R[maxn], rt[maxn], cl[tree_size], cr[tree_size], sum[tree_size];
ll T, D[maxn], D2[maxn];
vector<edge> G[maxn];

void dfs(int v, ll d, int &k)
{
    ++k, L[v] = k, D[k] = d;
    for (int i = 0; i < (int)G[v].size(); ++i)
    {
        edge &e = G[v][i];
        dfs(e.to, e.cost + d, k);
    }
    R[v] = k;
}

int update(int pre, int x, int l, int r)
{
    int cur = ++cnt;
    cl[cur] = cl[pre], cr[cur] = cr[pre], sum[cur] = sum[pre] + 1;
    if (r - l > 1)
    {
        int m = (l + r) >> 1;
        x < m ? cl[cur] = update(cl[pre], x, l, m) : cr[cur] = update(cr[pre], x, m, r);
    }
    return cur;
}

int query(int u, int v, int x, int l, int r)
{
    if (r - 1 <= x)
        return sum[v] - sum[u];
    if (x < l)
        return 0;
    int m = (l + r) >> 1;
    return x < m ? query(cl[u], cl[v], x, l, m) : query(cr[u], cr[v], x, m, r) + sum[cl[v]] - sum[cl[u]];
}

int main()
{
    scanf("%d%lld", &N, &T);
    for (int i = 1; i < N; ++i)
    {
        int p;
        ll w;
        scanf("%d%lld", &p, &w);
        G[p - 1].push_back(edge{i, w});
    }
    int k = -1;
    dfs(0, 0, k);
    memcpy(D2, D, sizeof(ll) * N);
    sort(D, D + N);
    int n = unique(D, D + N) - D;
    for (int i = 0; i < N; ++i)
    {
        int x = lower_bound(D, D + n, D2[i]) - D;
        rt[i + 1] = update(rt[i], x, 0, n);
    }
    for (int i = 0; i < N; ++i)
    {
        int x = upper_bound(D, D + n, D2[L[i]] + T) - D - 1;
        printf("%d\n", query(rt[L[i]], rt[R[i] + 1], x, 0, n));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值