POJ 2480 积性函数

题意

传送门 POJ 2480 Longge’s problem

题解

∑ 1 ≤ i ≤ n g c d ( i , n ) \sum\limits_{1\leq i\leq n}gcd(i,n) 1ingcd(i,n) 暴力枚举显然超时,考虑到 g c d ( i , N ) gcd(i,N) gcd(i,N) 的值域规模较小,将相同最大公约数的情况合并计算。 d = g c d ( i , n ) = d × g c d ( i / d , n / d ) d=gcd(i,n)=d\times gcd(i/d,n/d) d=gcd(i,n)=d×gcd(i/d,n/d),可得 g c d ( i / d , n / d ) = 1 gcd(i/d,n/d)=1 gcd(i/d,n/d)=1,满足条件的个数为 ϕ ( n / d ) \phi(n/d) ϕ(n/d)。则上式变换为 f ( n ) = ∑ d ∣ n ϕ ( n d ) d = ∑ d ∣ n ϕ ( d ) n d f(n)=\sum\limits_{d|n}\phi (\frac{n}{d})d=\sum\limits_{d|n}\phi (d)\frac{n}{d} f(n)=dnϕ(dn)d=dnϕ(d)dn 直接枚举约数求解欧拉函数可以在时间限制内处理单次查询,但对于多次查询难以胜任。考虑积性函数,设 n , m n,m n,m 互质,则有
f ( n m ) = ∑ d ∣ n m ϕ ( d ) n m d f(nm)=\sum\limits_{d|nm}\phi (d)\frac{nm}{d} f(nm)=dnmϕ(d)dnm 乘法分配律展开
f ( n m ) = ∑ d = d 1 d 2 , d 1 ∣ n , d 2 ∣ m ϕ ( d 1 d 2 ) n m d 1 d 2 f(nm)=\sum\limits_{d=d_1d_2,d1|n,d2|m}\phi (d_1d_2)\frac{nm}{d_1d_2} f(nm)=d=d1d2,d1n,d2mϕ(d1d2)d1d2nm 由于欧拉函数为积性函数,可得 f ( n m ) = ( ∑ d ∣ n ϕ ( d ) n d ) × ( ∑ d ∣ m ϕ ( d ) m d ) = f ( n ) × f ( m ) f(nm)=(\sum\limits_{d|n}\phi (d)\frac{n}{d})\times (\sum\limits_{d|m}\phi (d)\frac{m}{d})=f(n)\times f(m) f(nm)=(dnϕ(d)dn)×(dmϕ(d)dm)=f(n)×f(m) f ( n ) f(n) f(n) 是积性函数。根据算数基本定理 n = ∏ i = 1 m p i c i n=\prod\limits_{i=1}^{m}p_i^{c_i} n=i=1mpici,则有 f ( n ) = ∏ i = 1 m f ( p i c i ) f(n)=\prod\limits_{i=1}^{m}f(p_i^{c_i}) f(n)=i=1mf(pici)。对于单个质因子,有
f ( p c ) = ∑ d ∣ p c ϕ ( d ) p c d = p c + ∑ 1 ≤ i ≤ c p i − 1 ( p − 1 ) p c p i = ( c + 1 ) p c − c p c − 1 f(p^c)=\sum\limits_{d|p^c}\phi(d)\frac{p^c}{d}=p^c+\sum\limits_{1\leq i\leq c}p^{i-1}(p-1)\frac{p^c}{p^i}=(c+1)p^c-cp^{c-1} f(pc)=dpcϕ(d)dpc=pc+1icpi1(p1)pipc=(c+1)pccpc1 n n n 进行质因子分解,则可以在 O ( n ) O(\sqrt n) O(n ) 复杂度处理单次查询。

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <map>
using namespace std;
typedef long long ll;
typedef map<int, int> mp;

mp prime_factor(int n)
{
    mp res;
    for (ll i = 2LL; i * i <= n; ++i)
    {
        while (n % i == 0)
            ++res[i], n /= i;
    }
    if (n > 1)
        ++res[n];
    return res;
}

int qpow(ll x, int n)
{
    int res = 1;
    while (n)
    {
        if (n & 1)
            res *= x;
        x *= x;
        n >>= 1;
    }
    return res;
}

int main()
{
    int n;
    while (~scanf("%d", &n))
    {
        mp prime = prime_factor(n);
        ll res = 1;
        for (mp::iterator it = prime.begin(); it != prime.end(); ++it)
        {
            int p = it->first, c = it->second, t = qpow(p, c - 1);
            res *= (ll)(c + 1) * p * t - (ll)c * t;
        }
        printf("%lld\n", res);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值