POJ 2230 欧拉回路

题意

传送门 POJ 2230 Watchcow

题解

求图中每条无向边被正、反两个方向各经过一次的欧拉回路。将各边看做两条无向边,此时各点的度数都为偶数,存在欧拉回路,且各边拆成的两条边必然在欧拉回路上方向相反。 D F S DFS DFS 求解欧拉回路,总时间复杂度 O ( N + M ) O(N+M) O(N+M)

可以更简单地实现。无向边在邻接表中会以正、负两个方向分别保存一次,将问题看做求解有向图的欧拉回路,那么求解时仅对递归的有向边做标记,即可在原图直接求解欧拉回路。

#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 10005, maxm = 2 * 50005;
int N, M, top, nr, st[maxm], res[maxm];
int tot, head[maxn], to[maxm], nxt[maxm];

inline void add(int x, int y) { to[++tot] = y, nxt[tot] = head[x], head[x] = tot; }

void euler()
{
    st[++top] = 1;
    while (top)
    {
        int x = st[top], y, &i = head[x];
        if (i)
            y = to[i], st[++top] = y, i = nxt[i];
        else
            --top, res[++nr] = x;
    }
}

int main()
{
    scanf("%d%d", &N, &M);
    for (int i = 1, x, y; i <= M; ++i)
        scanf("%d%d", &x, &y), add(x, y), add(y, x);
    euler();
    for (int i = nr; i; --i)
        printf("%d\n", res[i]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值