题意
题解
求图中每条无向边被正、反两个方向各经过一次的欧拉回路。将各边看做两条无向边,此时各点的度数都为偶数,存在欧拉回路,且各边拆成的两条边必然在欧拉回路上方向相反。 D F S DFS DFS 求解欧拉回路,总时间复杂度 O ( N + M ) O(N+M) O(N+M)。
可以更简单地实现。无向边在邻接表中会以正、负两个方向分别保存一次,将问题看做求解有向图的欧拉回路,那么求解时仅对递归的有向边做标记,即可在原图直接求解欧拉回路。
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 10005, maxm = 2 * 50005;
int N, M, top, nr, st[maxm], res[maxm];
int tot, head[maxn], to[maxm], nxt[maxm];
inline void add(int x, int y) { to[++tot] = y, nxt[tot] = head[x], head[x] = tot; }
void euler()
{
st[++top] = 1;
while (top)
{
int x = st[top], y, &i = head[x];
if (i)
y = to[i], st[++top] = y, i = nxt[i];
else
--top, res[++nr] = x;
}
}
int main()
{
scanf("%d%d", &N, &M);
for (int i = 1, x, y; i <= M; ++i)
scanf("%d%d", &x, &y), add(x, y), add(y, x);
euler();
for (int i = nr; i; --i)
printf("%d\n", res[i]);
return 0;
}