P2501 [HAOI2006] DP

题意

传送门 P2501 [HAOI2006]数字序列

题解

改变最少的数字,使序列单调严格上升。考虑补集,即原序列中最长的子序列,其中任意位置 i , j i,j i,j 的数字满足 A i − A j ≥ i − j A_i-A_j\geq i-j AiAjij。设 B i = A i − i B_i=A_i-i Bi=Aii,问题转化为求 B B B 中的最长不降子序列,转化为经典的类 L I S LIS LIS 问题,使用二分优化的 D P DP DP 求解,时间复杂度 O ( N log ⁡ N ) O(N\log N) O(NlogN)

在改变数字最少的条件下,最小化改变的绝对值之和。那么可以通过记录以任意位置为子序列末尾元素的情况下,前一个元素的位置,递推求解绝对值之和的最小值。为方便起见,设子序列首尾元素分别为 B B B 中元素不会取到的极小、极大值。

问题转化为已知子序列末尾元素 B i B_i Bi 及其前一元素 B j B_j Bj,求解使 [ j + 1 , i ) [j+1,i) [j+1,i) 区间单调不降的改变的绝对值之和的最小值。可以证明,满足答案的改变后的区间,存在一组构造,仅由 B i , B j B_i,B_j Bi,Bj 构成;即存在位置 k k k,区间 [ j + 1 , k ) [j+1,k) [j+1,k) B j B_j Bj,区间 [ k , i ) [k, i) [k,i) B i B_i Bi

考虑一个经典问题,即求满足使 ∑ i ∣ A i − x ∣ \sum_i\lvert A_i-x\rvert iAix 最小的 x x x。考虑在任意位置移动,容易得到答案,即 A A A 的中位数(若 A A A 规模为偶数,设使 A A A 有序后正中间两个元素为 A i , A i + 1 A_i,A_{i+1} Ai,Ai+1,则答案取值范围为 [ A i , A i + 1 ] [A_i,A_{i+1}] [Ai,Ai+1])。若 x x x 不能取到 A A A 的中位数,显然在以中位数为分隔的同侧区间,越逼近中位数则答案更优。在本问题中,最长不降子序列的邻项元素 B j , B i ( j < i ) B_j,B_i(j<i) Bj,Bi(j<i),满足区间 [ j + 1 , i ) [j+1,i) [j+1,i) 内任意元素 B k < B j B_k<B_j Bk<Bj B k > B i B_k>B_i Bk>Bi,否则不满足子序列的最长性。那么改变 [ i + 1 , j ) [i+1,j) [i+1,j) 内的任意区间为 x x x,使 ∑ k ∣ B k − x ∣ \sum_k\lvert B_k-x\rvert kBkx 最小,取 x x x B i , B j B_i,B_j Bi,Bj 两者之一,为一组满足最优解的构造。

对于需要改变的任意区间 [ j + 1 , i ) [j+1,i) [j+1,i),假设全部元素改变为 B i B_i Bi,再顺序扫描一遍区间,将前缀的全部元素改变为 B j B_j Bj,同时更新答案即可。代码如下,总时间复杂度 O ( N 3 ) O(N^3) O(N3),在随机数据下运行较快。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 35005, maxb = 10000000;
int N, A[maxn], B[maxn], dp[maxn];
ll sum[maxn];
vector<int> id[maxn];

int read()
{
    int x = 0;
    char c = 0;
    for (; !isdigit(c); c = getchar())
        ;
    for (; isdigit(c); c = getchar())
        x = (x << 1) + (x << 3) + c - '0';
    return x;
}

int main()
{
    N = read();
    for (int i = 1; i <= N; ++i)
        A[i] = read(), B[i] = A[i] - i;
    B[0] = -maxb, B[N + 1] = maxb;
    memset(dp, 0x3f, sizeof(dp));
    memset(sum, 0x3f, sizeof(sum));
    dp[0] = B[0], sum[0] = 0;
    id[0].push_back(0);
    for (int i = 1; i <= N + 1; ++i)
    {
        int d = upper_bound(dp, dp + N + 2, B[i]) - dp;
        dp[d] = B[i];
        id[d].push_back(i);
        for (auto &j : id[d - 1])
        {
            if (B[i] < B[j])
                continue;
            ll s = sum[j];
            int x = B[i] - B[j];
            for (int k = j + 1; k < i; ++k)
                s += abs(B[k] - B[i]);
            ll mn = s;
            for (int k = j + 1; k < i; ++k)
                s += B[k] < B[j] ? -x : x, mn = min(mn, s);
            sum[i] = min(sum[i], mn);
        }
    }
    int len = upper_bound(dp, dp + N + 2, B[N + 1]) - dp - 2;
    printf("%d\n%lld\n", N - len, sum[N + 1]);
    return 0;
}

仍可以进一步优化。上述算法中,对于区间 [ j + 1 , i ) [j+1,i) [j+1,i),维护将区间全部元素改变为 B i B_i Bi 的绝对值之和 s s s,维护将区间前缀全部转换为 B j B_j Bj 的单位贡献最大值。将区间前缀信息,转化为区间信息 a a a 与区间后缀信息 m x mx mx 之差进行维护
{ s = ∑ k ∈ [ j + 1 , i ) ∣ B [ i ] − B [ k ] ∣ a = ∑ k ∈ [ j + 1 , i ) [ B k > B i ] − [ B k < B j ] m x = max ⁡ j ≤ l < i ∑ k ∈ [ l + 1 , i ) [ B k > B i ] − [ B k < B j ] \begin{cases} s=\sum_{k\in[j+1,i)}\lvert B[i]-B[k]\rvert\\ a=\sum_{k\in[j+1,i)}[B_k>B_i]-[B_k<B_j]\\ mx=\max_{j\leq l<i}\sum_{k\in[l+1,i)}[B_k>B_i]-[B_k<B_j]\\ \end{cases} s=k[j+1,i)B[i]B[k]a=k[j+1,i)[Bk>Bi][Bk<Bj]mx=maxjl<ik[l+1,i)[Bk>Bi][Bk<Bj] 则改变区间 [ j + 1 , i ) [j+1,i) [j+1,i) 使之满足条件,最小改变的绝对值之和为 s + ( B i − B j ) × ( a − m x ) s+(B_i-B_j)\times(a-mx) s+(BiBj)×(amx)。上述维护仅拓展了区间左界,那么可以固定子序列末尾元素为右界,倒序扫描子序列末尾元素的前一元素,时间复杂度为 O ( N ) O(N) O(N)。则总时间复杂度优化为 O ( N 2 ) O(N^2) O(N2)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 35005, maxb = 10000000;
int N, A[maxn], B[maxn], dp[maxn];
ll sum[maxn];
vector<int> id[maxn];

int read()
{
    int x = 0;
    char c = 0;
    for (; !isdigit(c); c = getchar())
        ;
    for (; isdigit(c); c = getchar())
        x = (x << 1) + (x << 3) + c - '0';
    return x;
}

int main()
{
    N = read();
    for (int i = 1; i <= N; ++i)
        A[i] = read(), B[i] = A[i] - i;
    B[0] = -maxb, B[N + 1] = maxb;
    memset(dp, 0x3f, sizeof(dp));
    memset(sum, 0x3f, sizeof(sum));
    dp[0] = B[0], sum[0] = 0;
    id[0].push_back(0);
    for (int i = 1; i <= N + 1; ++i)
    {
        int d = upper_bound(dp, dp + N + 2, B[i]) - dp;
        dp[d] = B[i];
        id[d].push_back(i);
        int pre = i - 1, a = 0, mx = 0;
        ll s = 0;
        for (int j = (int)id[d - 1].size() - 1; j >= 0; --j)
        {
            int cur = id[d - 1][j];
            if (B[cur] > B[i])
                continue;
            for (int k = pre; k > cur; --k)
                s += abs(B[i] - B[k]), a += B[k] > B[i] ? 1 : -1, mx = max(mx, a);
            sum[i] = min(sum[i], sum[cur] + s + (ll)(B[i] - B[cur]) * (a - mx));
            pre = cur;
        }
    }
    int len = upper_bound(dp, dp + N + 2, B[N + 1]) - dp - 2;
    printf("%d\n%lld\n", N - len, sum[N + 1]);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值