题意
传送门 Codeforces 1642E Anonymity Is Important
题解
对于 t = 0 t=0 t=0 的询问,若 x = 0 x=0 x=0,则区间内所有人的状态是确定的,即都没有生病。使用 std::set 维护状态仍不确定的人的集合,通过二分求 [ l , r ] [l,r] [l,r],就可以 O ( log n ) O(\log n) O(logn) 将明确状态为没有生病的人从集合中删除。
若存在一个 x = 1 x=1 x=1 的区间 [ l , r ] [l,r] [l,r],满足 l ≤ i ≤ r l\leq i\leq r l≤i≤r 且区间内其余人明确为没有生病的状态,则可以判断第 i i i 个人 生病。
设 l b , u b lb,ub lb,ub 分别为第 i i i 个人左右两侧的第一个仍在集合中的人,那么一定不存在左右界都位于 [ l b + 1 , i ) [lb+1,i) [lb+1,i) 或 [ i + 1 , u b ) [i+1,ub) [i+1,ub) 的询问,满足 x = 1 x=1 x=1。那么应用线段树维护 x = 1 x=1 x=1 且左边界位于 [ l b + 1 , i ] [lb+1,i] [lb+1,i] 的查询中,右边界的最小值即可。总时间复杂度 O ( ( q + n ) log n ) O\big((q+n)\log n\big) O((q+n)logn)
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 2E5 + 5, SZ = 1 << 19, INF = 0x3f3f3f3f;
int N, Q, rec[MAXN];
set<int> ps;
int dat[SZ];
void init() { memset(dat, 0x3f, sizeof(dat)); }
void change(int a, int b, int x, int k = 0, int l = 0, int r = N)
{
if (b <= l || r <= a)
return;
if (a <= l && r <= b)
dat[k] = x;
else
{
int chl = k * 2 + 1, chr = k * 2 + 2, m = (l + r) / 2;
change(a, b, x, chl, l, m), change(a, b, x, chr, m, r);
dat[k] = min(dat[chl], dat[chr]);
}
}
int ask(int a, int b, int k = 0, int l = 0, int r = N)
{
if (b <= l || r <= a)
return INF;
if (a <= l && r <= b)
return dat[k];
int chl = k * 2 + 1, chr = k * 2 + 2, m = (l + r) / 2;
return min(ask(a, b, chl, l, m), ask(a, b, chr, m, r));
}
int main()
{
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> N >> Q;
memset(rec, 0x3f, sizeof(rec));
for (int i = 0; i < N; ++i)
ps.insert(i);
init();
for (int i = 0; i < Q; ++i)
{
int type, l, r, x;
cin >> type;
if (type == 0)
{
cin >> l >> r >> x;
--l;
if (x == 0)
{
for (auto it = ps.lower_bound(l); it != ps.end() && *it < r;)
it = ps.erase(it);
}
else
{
if (r < rec[l])
rec[l] = r, change(l, l + 1, r);
}
}
else
{
cin >> l;
--l;
if (!ps.count(l))
cout << "NO\n";
else
{
int lb = -1, ub = N;
auto it = ps.lower_bound(l);
if (it != ps.begin())
lb = *--it;
it = ps.upper_bound(l);
if (it != ps.end())
ub = *it;
cout << (ask(lb + 1, l + 1) <= ub ? "YES" : "N/A") << '\n';
}
}
}
return 0;
}