Codeforces 1642E 线段树

本文解析了Codeforces竞赛题目1642E,介绍了如何利用二分查找和线段树数据结构解决关于区间内匿名人群健康状态的问题。通过维护不确定人群集合和优化查询操作,达到O((q+n)logn)的时间复杂度。
摘要由CSDN通过智能技术生成
题意

传送门 Codeforces 1642E Anonymity Is Important

题解

对于 t = 0 t=0 t=0 的询问,若 x = 0 x=0 x=0,则区间内所有人的状态是确定的,即都没有生病。使用 std::set 维护状态仍不确定的人的集合,通过二分求 [ l , r ] [l,r] [l,r],就可以 O ( log ⁡ n ) O(\log n) O(logn) 将明确状态为没有生病的人从集合中删除。

若存在一个 x = 1 x=1 x=1 的区间 [ l , r ] [l,r] [l,r],满足 l ≤ i ≤ r l\leq i\leq r lir 且区间内其余人明确为没有生病的状态,则可以判断第 i i i 个人 生病。

l b , u b lb,ub lb,ub 分别为第 i i i 个人左右两侧的第一个仍在集合中的人,那么一定不存在左右界都位于 [ l b + 1 , i ) [lb+1,i) [lb+1,i) [ i + 1 , u b ) [i+1,ub) [i+1,ub) 的询问,满足 x = 1 x=1 x=1。那么应用线段树维护 x = 1 x=1 x=1 且左边界位于 [ l b + 1 , i ] [lb+1,i] [lb+1,i] 的查询中,右边界的最小值即可。总时间复杂度 O ( ( q + n ) log ⁡ n ) O\big((q+n)\log n\big) O((q+n)logn)

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 2E5 + 5, SZ = 1 << 19, INF = 0x3f3f3f3f;
int N, Q, rec[MAXN];
set<int> ps;
int dat[SZ];

void init() { memset(dat, 0x3f, sizeof(dat)); }

void change(int a, int b, int x, int k = 0, int l = 0, int r = N)
{
    if (b <= l || r <= a)
        return;
    if (a <= l && r <= b)
        dat[k] = x;
    else
    {
        int chl = k * 2 + 1, chr = k * 2 + 2, m = (l + r) / 2;
        change(a, b, x, chl, l, m), change(a, b, x, chr, m, r);
        dat[k] = min(dat[chl], dat[chr]);
    }
}

int ask(int a, int b, int k = 0, int l = 0, int r = N)
{
    if (b <= l || r <= a)
        return INF;
    if (a <= l && r <= b)
        return dat[k];
    int chl = k * 2 + 1, chr = k * 2 + 2, m = (l + r) / 2;
    return min(ask(a, b, chl, l, m), ask(a, b, chr, m, r));
}

int main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    cin >> N >> Q;
    memset(rec, 0x3f, sizeof(rec));
    for (int i = 0; i < N; ++i)
        ps.insert(i);
    init();
    for (int i = 0; i < Q; ++i)
    {
        int type, l, r, x;
        cin >> type;
        if (type == 0)
        {
            cin >> l >> r >> x;
            --l;
            if (x == 0)
            {
                for (auto it = ps.lower_bound(l); it != ps.end() && *it < r;)
                    it = ps.erase(it);
            }
            else
            {
                if (r < rec[l])
                    rec[l] = r, change(l, l + 1, r);
            }
        }
        else
        {
            cin >> l;
            --l;
            if (!ps.count(l))
                cout << "NO\n";
            else
            {
                int lb = -1, ub = N;
                auto it = ps.lower_bound(l);
                if (it != ps.begin())
                    lb = *--it;
                it = ps.upper_bound(l);
                if (it != ps.end())
                    ub = *it;
                cout << (ask(lb + 1, l + 1) <= ub ? "YES" : "N/A") << '\n';
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值