关于SBL框架内未知系数方差做先验还是精度做先验

没有废话,需要基础。暂时不做解答!!!

zi服从GIG分布,如下。当ai=0,其退化成特殊的IG分布

通常我们在稀疏系数的先验选择为高斯先验。而在高斯先验中我们会让未知系数服从均值为0方差未知的高斯分布。也叫做student‘t分布。好像是这么叫的。

1、方差做先验。

这里由于方差做先验,假设未知系数是h吧,方差是r吧

此时有h~N(0,r),或者h~CN(0,r)

一般在SBL框架里我们让r服从一个gamma分布。gamma分布的形状参数a和尺度参数b

根据经验epsilon通常被设置为1而eta通常设置为1e-4或者为0.这里我们只讲解到2L先验,至于3L就是多加一层gamma分布来改变超参数b

因为这是方差,设计到一个贝塞尔近似的结果。3L基本没有作用。

假如r~Gamma(epsilon,eta)

b(r)正比于GIG分布,而GIG分布的均值计算方法同下

这里的前提就是x趋于0

如果我们在设置的时候让尺度参数b=0,此刻b(r)正比于IG分布(逆gamma分布)

而这个逆gamma分布居然能得到和GIG分布求解r均值近似的结果一样,这令我很惊讶。我就搞2L,还设置b=0,我直接用IG岂不美哉。

以下列出一个我写的例子

2.精度做先验

精度精度到底是什么,说白了就是方差倒数!h~N(0,r^-1) or h~CN(0,r^-1)精度做先验得到的结果依然会是gamma分布,因为gamma分布的均值十分好求,所以精度要计算的更明了。且变到3L也是可以照样适用的。

参考文献:

Babacan, S. Derin, Shinichi Nakajima, and Minh N. Do. "Bayesian group-sparse modeling and variational inference." IEEE transactions on signal processing 62.11 (2014): 2906-2921.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值