基于LSTM模型的股票价格预测(论文)

目录
摘 要 1
1 绪论 1
1.1 研究背景及意义 1
1.2 国内外研究综述 3
1.3 本文主要研究内容 8
1.4 论文的组织结构 9
2 理论知识 10
2.1 时间序列模型 10
2.2 循环神经网络 (RNN) 模型 16
2.3 长短期记忆神经网络 (LSTM) 20
3 模型构建 31
3.1 数据预处理 31
3.2 实验设计 35
4 实例分析 38
4.1 时间序列模型建模 38
4.2 长短期记忆神经网络 51
4.3 本章小结 57
结论与展望 58
参 考 文 献 61
LSTM 神经网络可以通过输入门、遗忘门和输出门来控制输入数据的传输,并保持记忆储存单元输出和结果输出的独立性,使得序列在传输时可以保留重要信息,并对其保持较长期的记忆。因此,LSTM神经网络在金融时间序列的预测中得应用就愈发广泛。
1.3本文主要研究内容
•对于统计学的理论知识, 时间序列模型的原理机器实现以及模型参数检验进行学习,做好理论知识的相关准备;
•对神经网络的原理,RNN,LSTM 算法原理及其实现进行学习,为后续的研究夯实基础;
•进行实例验证分析,选取我国真实的股票市场数据,进行建模分析,预测股票价格,并进行预测结果分析;
•根据预测结果分析,对模型进行评价,得出结论。
1.4论文的组织结构
第一章为绪论,主要介绍本文的研究背景、研究意义、国内外的研究发展以及主要研究内容。
第二章为理论知识介绍,主要介绍时间序列的相关定义、常见的模型原理及建模步骤还有LSTM模型的理论基础与训练方法。
第三章介绍了数据来源、预处理方法和模型的构建,还有参数的优化方法及评价指标的选择。
第四章是实例验证分析,根据上一章的步骤进行建模,并做出收盘价序列的预测,再比较各模型之间的优缺点。
最后对对本文的工作内容进行总结,提出本文的不足,并展望一下未来的研究方向。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### LSTM用于股票收益预测的研究与实践 #### 使用LSTM进行股票收益预测的方法概述 长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),专门设计用来解决传统RNN难以处理的长期依赖问题。对于股票市场这样的复杂动态系统,LSTM可以很好地捕捉到历史数据中的模式并做出合理的未来趋势估计[^2]。 为了提高预测性能,通常会采用一些改进措施: - **特征工程**:除了原始的价格序列外,还可以加入其他可能影响股价的因素作为输入变量,比如成交量、技术指标等。 - **超参数调优**:调整诸如隐藏层单元数、批大小(batch size)、迭代次数(epochs)以及学习率等关键参数来寻找最优配置。 - **正则化手段**:引入Dropout机制或其他形式的约束条件以减少过拟合现象的发生概率;同时合理控制训练轮次避免过度拟合特定样本集。 #### 研究论文推荐 一篇值得阅读的文章是《Deep Learning for Stock Market Prediction Using News Sentiment Analysis and Technical Indicators》,该文探讨了如何利用新闻情感分析和技术指标相结合的方式增强LSTM模型的表现力。另一篇则是《A Novel Hybrid Model Based on SSA, CNN, and LSTM Networks for Time Series Forecasting》介绍了基于奇异谱分析(SSA),卷积神经网络(CNN)LSTM混合架构的时间序列预测框架[^1]。 #### 教程资源链接 网上有许多优秀的在线课程和博客文章可以帮助初学者快速上手构建自己的LSTM预测系统。例如,“TensorFlow官方文档”提供了详细的API说明及案例解析;还有像Kaggle平台上的竞赛项目也经常会有参赛者分享完整的解决方案供他人参考学习。 #### Python代码示例 下面给出一段简单的Python代码片段展示了一个基本版的LSTM股票收益率预测程序结构: ```python import numpy as np from keras.models import Sequential from keras.layers import Dense,LSTM, Dropout def build_lstm_model(input_shape): model = Sequential() # 添加一层LSTM层 model.add(LSTM(units=50,return_sequences=True,input_shape=input_shape)) model.add(Dropout(0.2)) # 防止过拟合 # 可选地堆叠更多LSTM层... # 输出层 model.add(Dense(1)) opt = Adam(lr=0.002) model.compile(optimizer=opt, loss='mean_squared_error') return model ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值