目录
摘 要 1
1 绪论 1
1.1 研究背景及意义 1
1.2 国内外研究综述 3
1.3 本文主要研究内容 8
1.4 论文的组织结构 9
2 理论知识 10
2.1 时间序列模型 10
2.2 循环神经网络 (RNN) 模型 16
2.3 长短期记忆神经网络 (LSTM) 20
3 模型构建 31
3.1 数据预处理 31
3.2 实验设计 35
4 实例分析 38
4.1 时间序列模型建模 38
4.2 长短期记忆神经网络 51
4.3 本章小结 57
结论与展望 58
参 考 文 献 61
LSTM 神经网络可以通过输入门、遗忘门和输出门来控制输入数据的传输,并保持记忆储存单元输出和结果输出的独立性,使得序列在传输时可以保留重要信息,并对其保持较长期的记忆。因此,LSTM神经网络在金融时间序列的预测中得应用就愈发广泛。
1.3本文主要研究内容
•对于统计学的理论知识, 时间序列模型的原理机器实现以及模型参数检验进行学习,做好理论知识的相关准备;
•对神经网络的原理,RNN,LSTM 算法原理及其实现进行学习,为后续的研究夯实基础;
•进行实例验证分析,选取我国真实的股票市场数据,进行建模分析,预测股票价格,并进行预测结果分析;
•根据预测结果分析,对模型进行评价,得出结论。
1.4论文的组织结构
第一章为绪论,主要介绍本文的研究背景、研究意义、国内外的研究发展以及主要研究内容。
第二章为理论知识介绍,主要介绍时间序列的相关定义、常见的模型原理及建模步骤还有LSTM模型的理论基础与训练方法。
第三章介绍了数据来源、预处理方法和模型的构建,还有参数的优化方法及评价指标的选择。
第四章是实例验证分析,根据上一章的步骤进行建模,并做出收盘价序列的预测,再比较各模型之间的优缺点。
最后对对本文的工作内容进行总结,提出本文的不足,并展望一下未来的研究方向。