功能支持方案1.0 - 倪星

本文介绍了一米辅导平台的工单系统运作流程,包括工单的提交、展示、跟踪及关闭等环节,并提到了一米HelpApp的功能以及App自检体系等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.工单体系
1.工单内容

工单编号:年月日+编号(201611170001),系统自动给出
工单类型:0(无需人工处理)和1(需要人工处理)
课时编号:具体的课时编号,系统给出或者问题发确认填写
紧急程度:1(十分紧急)2(紧急)3(一般),由问题发起人填写
上报时间:2016-10-17 18:21,系统自动给出
问题类型:app-网络问题,erp-登录问题,app-声音问题….,由问题发起人选填
问题描述:具体的问题描述,由问题发起人填写
处理方案:第一时间给出的处理方案,由技术支持填写或者系统自动填写
处理结果:已解决/未解决/周转中
转处理人:如果第一时间未处理,技术支持又无法解决,由技术支持将问题转给有能力解决的人员
后续处理方案:转处理人提出的解决方案
处理结果:已解决/未解决
发起人满意度:满意/不满意,由问题发确认选填

2.工单的提交方式

(1)老师或学生在上课时遇到问题,直接点击课堂界面上的帮助按钮提交工单。
(2)cc,cr或其他人员在遇到问题时,登录erp或者一米Helpapp(假想的app)进行提交。
(3)一些没有权限提交工单的人员告知技术支持或者其他有提交权限的人员进行提交。

3.工单的展示与跟踪

(1)工单的展示形式是以每日流水的形式给出,按优先级+上报时间+处理结果的规则进行排序。时间越早,优先级越高的未解决的工单排序越高。
(2)工单的展示位置,erp或者一米Help app(假想的app)。
(3)工单的反馈:问题的发起人必须对自己提交的工单负责。当自己提交的问题被处理后,问题发起人必须填写工单的满意度一项。如果问题发起人未及时反馈处理结果,可以通过技术手段给予提示。如,当老师下一次打开app时,弹出提示框进行请工单处理的提示。

4.工单的生命周期

(1)工单的产生
老师或学生上课时遇到问题,在教室界面直接点击帮助按钮,app会弹出工单填写界面,老师或学生只需选择相关项如,问题类型,问题描述。点击提交工单,此工单就产生。

cc,cr,技术支持等其他人员,需要通过erp或者一米Helpapp(假想的app)填写工单。点击提交工单,此工单就产生。

(2)工单的流转

当老师或者学生从教室界面提交工单后,系统会自动根据工单中的问题类型以及问题描述关键字,向老师或者学生推送几天条解决方案。老师或学生根据这些方案进行尝试,如果解决问题,此工单的类型则为0。无需再去经过流转直接标为已解决。
当系统的解决方案无法解决问题时,工单类型会变为1,也就是需要人工处理的工单。系统会推送消息(短信或者邮件)给技术支持。工单会流转到技术支持。技术支持给出解决方案并告知问题发起人。如果解决则由问题发起人进行工单关闭反馈。如果不能解决,由技术支持将工单流转给其他技术人员。再进行工单的流转。

cc,cr,技术支持等其他人员产生的工单直接默认为1,进行正常流转。

(3)工单的关闭

也就是工单的关闭反馈:问题的发起人必须对自己提交的工单负责。当自己提交的问题被处理后,问题发起人必须填写工单的满意度一项。如果问题发起人未及时反馈处理结果,可以通过技术手段给予提示。如,当老师下一次打开app时,弹出提示框进行请工单处理的提示。经过工单的满意度填完。此工单正式纳入历史工单。

二.一米Help App
类似于一米教研app,展示每天流水的工单信息,具体界面及功能待研究。

三.App的自检体系
一米辅导app增加一键自检功能。
有关声音,视频的设备相关问题,app可以进行一键自检。比如,权限是否已开,网络是否正常,是否设置静音等等。可以根据自检结果帮助用户快速解决基本问题。

四.其他功能支持
一米辅导app还可以有其他技术支持功能。比如技术支持直接进入教室,观察上课情况。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值