基于机器学习算法的菜谱推荐系统设计与实现
【摘 要】本文介绍了基于 Flask 框架的菜谱数据可视化系统的设计与实现。系统使用 MySQL 数据库存储菜谱数据,同时利用 Python 进行数据分析和可视化处理。
首先,我们设计了系统的数据库结构,包括菜谱信息表、食材表、用户表等。通过 Flask 框架搭建 Web 应用,并实现用户注册、登录、上传菜谱等功能。用户可以在系统中查看菜谱详情、搜索特定菜谱,并按照自己的喜好进行收藏和点赞。
其次,我们利用 Python 的数据分析库(如 Pandas、Matplotlib、Seaborn 等)对菜谱数据进行处理和可视化。通过对菜谱的热量、营养成分、口味等进行分析,生成各种可视化图表,如柱状图、饼图、热力图等,帮助用户更直观地了解菜谱信息。
最后,我们实现了一个简单的推荐系统,根据用户的偏好和历史行为,推荐符合用户口味的菜谱。通过协同过滤或基于内容的推荐算法,提高用户体验和系统的个性化服务水平。
本文通过结合 Flask 框架、MySQL 数据库和 Python 数据分析技术,实现了一个功能完善的菜谱数据可视化系统,为用户提供了丰富的菜谱信息和个性化的推荐服务。该系统具有良好的扩展性和可维护性,适用于不同规模的菜谱数据管理和展示需求。
【关键词】Flask,Python,可视化,菜谱数据
Design and implementation of recipe data visualization system based on Flask
【Abstract】This paper introduces the design and implementation of recipe data visualization system based on Flask framework. The system uses MySQL database to store recipe data, and Python is used for data analysis and visualization.
First of all, we design the database structure of the system, including menu information table, food table, user table and so on. Build Web application through Flask framework, and realize user registration, login, upload recipes and other functions. Users can view recipe details in the system, search for specific recipes, and save and like according to their preferences.
Second, we use Python's data analysis libraries (e.g. Pandas, Matplotlib, Seaborn, etc.) to process and visualize recipe data. By analyzing the heat, nutrition and taste of the recipe, various visual charts are generated, such as bar chart, pie chart, heat map, etc., to help users understand the recipe information more intuitively.
Finally, we implement a simple recommendation system that recommends recipes that match the user's tastes based on their preferences and historical behavior. Improve the user experience and personalized service level of the system through collaborative filtering or content-based recommendation algorithms.
In this paper, by combining Flask framework, MySQL database and Python data analysis technology, a fully functional recipe data visualization system is implemented to provide users with rich recipe information and personalized recommendation services. The system has good expansibility and maintainability, and is suitable for different scale of recipe data management and display needs.
【 Key words 】Flask, Python, visualization, recipe data
目 录
1 绪论
1.1研究背景与现状
健康饮食意识的提升:随着人们对健康饮食的重视程度逐渐增加,越来越多的人开始关注食材的营养价值和热量含量。菜谱数据可视化系统可以帮助用户更直观地了解不同菜品的营养成分,有助于选择符合自身健康需求的饮食方案。
数据科学在饮食领域的应用:随着数据科学和机器学习技术的发展,越来越多的研究开始将数据分析应用于饮食领域。菜谱数据可视化系统可以通过数据分析技术挖掘菜谱数据之间的关联性,为用户提供个性化的菜谱推荐和营养建议。
用户体验和个性化需求:现代社会注重个性化和定制化服务,人们对于个性化的饮食需求也日益增加。菜谱数据可视化系统可以根据用户的口味喜好、饮食习惯等信息,为用户提供定制化的菜谱推荐和个性化的服务体验。
互联网和移动应用的普及:随着互联网和移动应用的普及,人们获取信息的途径变得更加多样化和便捷化。菜谱数据可视化系统可以通过 Web 应用或移动应用的形式,为用户提供随时随地获取菜谱信息和营养分析的便利途径。
综上所述,菜谱数据可视化系统的研究背景主要包括健康饮食意识的提升、数据科学在饮食领域的应用、用户个性化需求以及互联网和移动应用的普及等方面。这些因素共同推动了菜谱数据可视化系统的发展,并为用户提供了更加智能化和便捷化的饮食管理服务。
1.2论文主要研究工作
菜谱数据可视化系统的论文主要研究工作可能包括以下几个方面:
系统架构设计:论文可能详细介绍了菜谱数据可视化系统的整体架构设计,包括系统模块划分、功能流程图等内容。针对菜谱数据的存储、处理和展示,论文可能提出了相应的解决方案和技术选型。
数据库设计与优化:论文可能对菜谱数据的数据库设计进行了深入分析,包括数据表结构设计、索引优化、查询性能优化等方面。通过合理设计数据库结构,提高系统的数据存取效率和稳定性。
用户交互与界面设计:论文可能介绍了用户交互和界面设计的方法和原则,包括用户注册登录、菜谱上传、搜索查看功能的实现方式。通过设计友好直观的用户界面,提升用户体验和系统易用性。
数据分析与可视化算法:论文可能探讨了利用Python数据分析库对菜谱数据进行处理和可视化的方法,包括数据清洗、特征提取、可视化展示等环节。通过数据分析算法,挖掘菜谱数据背后的信息,为用户提供更多有益的数据分析结果。
推荐系统设计与算法实现:论文可能介绍了菜谱数据可视化系统中推荐系统的设计思路和算法选择,包括基于协同过滤、基于内容的推荐算法等。通过推荐系统,提升用户体验和个性化服务水平。
系统实验与评估:论文可能对菜谱数据可视化系统进行了实际实验和评估,包括系统性能测试、用户体验调研等方面。通过实际测试和评估,验证系统的有效性和可行性。
综上所述,菜谱数据可视化系统的论文主要研究工作涵盖了系统架构设计、数据库设计与优化、用户交互与界面设计、数据分析与可视化算法、推荐系统设计与算法实现以及系统实验与评估等多个方面。这些工作共同构成了菜谱数据可视化系统的研究内容,为相关领域的学术研究和实际应用提供了有益的参考和借鉴。
系统的核心是解决海量电商菜谱数据可视化文件的存储与计算的任务。系统将采用Flask及数据可视化技术,通过创建CentOS虚拟机搭建Flask集群环境,使用Pycharm构建PythonWeb可视化展示系统。
2 技术总述
2.1 Pycharm
PyCharm是一种Python IDE(Integrated Development Environment,集成开发环境),带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调试、语法高亮、项目管理、代码跳转、智能提示、自动完成、单元测试、版本控制。此外,该IDE提供了一些高级功能,以用于支持Django框架下的专业Web开发。
2.2 MySQL数据库
MySQL数据库是一种财政的数据库系统,可以和Python语紧密的结合使用,被普遍使用在小型网站上,他的安全财政成本低的特点被广泛使用。
2.3 Flask框架
Flask是一个轻量级的可定制框架,使用Python语言编写,较其他同类型框架更为灵活、轻便、安全且容易上手。它可以很好地结合MVC模式进行开发,开发人员分工合作,小型团队在短时间内就可以完成功能丰富的中小型网站或Web服务的实现。另外,Flask还有很强的定制性,用户可以根据自己的需求来添加相应的功能,在保持核心功能简单的同时实现功能的丰富与扩展,其强大的插件库可以让用户实现个性化的网站定制,开发出功能强大的网站。
Flask是目前十分流行的web框架,采用Python编程语言来实现相关功能。它被称为微框架(microframework),“微”并不是意味着把整个Web应用放入到一个Python文件,微框架中的“微”是指Flask旨在保持代码简洁且易于扩展,Flask框架的主要特征是核心构成比较简单,但具有很强的扩展性和兼容性,程序员可以使用Python语言快速实现一个网站或Web服务。一般情况下,它不会指定数据库和模板引擎等对象,用户可以根据需要自己选择各种数据库。Flask自身不会提供表单验证功能,在项目实施过程中可以自由配置,从而为应用程序开发提供数据库抽象层基础组件,支持进行表单数据合法性验证、文件上传处理、用户身份认证和数据库集成等功能。
图2-1 Flask框架
Flask主要包括Werkzeug和Jinja2两个核心函数库,它们分别负责业务处理和安全方面的功能,这些基础函数为web项目开发过程提供了丰富的基础组件。Werkzeug库十分强大,功能比较完善,支持URL路由请求集成,一次可以响应多个用户的访问请求;支持Cookie和会话管理,通过身份缓存数据建立长久连接关系,并提高用户访问速度;支持交互式Pythonscript调试,提高用户体验;可以处理HTTP基本事务,快速响应客户端推送过来的访问请求。Jinja2库支持自动HTML转移功能,能够很好控制外部黑客的脚本攻击。系统运行速度很快,页面加载过程会将源码进行编译形成Python字节码,从而实现模板的高效运行;模板继承机制可以对模板内容进行修改和维护,为不同需求的用户提供相应的模板。目前Python的web框架有很多。除了Flask,还有django、Web2py等等。其中Django是目前Python的框架中使用度最高的。但是Django如同Java的EJB(EnterprisePythonBeansPythonEE服务器端组件模型)多被用于大型网站的开发,但对于大多数的小型网站的开发,使用SSH(Struts+Spring+Hibernat的一个PythonEE集成框架)就可以满足,和其他的轻量级框架相比较,Flask框架有很好的扩展性,这是其他Web框架不可替代的。
2.4 机器学习算法
机器学习是人工智能领域的重要分支,它致力于研究如何使计算机系统通过学习经验改善性能。下面是机器学习技术的综述:
监督学习(Supervised Learning):在监督学习中,模型通过输入数据和对应的标签进行训练,以便预测新的未知数据的标签。常见的监督学习算法包括线性回归、逻辑回归、决策树、随机森林、支持向量机等。
无监督学习(Unsupervised Learning):无监督学习旨在从数据中发现隐藏的模式和结构,而无需事先标记的标签。常见的无监督学习算法包括聚类、降维、关联规则等。
强化学习(Reinforcement Learning):强化学习是一种通过观察和与环境的交互来学习最优行为策略的方法。代表性的强化学习算法包括Q学习、深度强化学习等。
深度学习(Deep Learning):深度学习是一类基于人工神经网络的机器学习方法,其核心是通过多层非线性变换来对数据进行建模和学习特征表示。深度学习已经在图像识别、语音识别、自然语言处理等领域取得了突出的成就。
迁移学习(Transfer Learning):迁移学习利用一个任务上学到的知识来改善不同但相关任务的学习。这在数据稀缺或者新任务不足以支持完全训练新模型时非常有用。
集成学习(Ensemble Learning):集成学习通过结合多个模型的预测结果,以获得比单个模型更好的性能。常见的集成学习方法包括Bagging、Boosting和Stacking等。
自然语言处理(Natural Language Processing, NLP):NLP是一种结合了语言学、计算机科学和人工智能领域的交叉学科,旨在实现计算机与人类语言的有效沟通。NLP的技术包括文本分类、命名实体识别、情感分析等。
2.5 本章小结
本章主要分析了系统开发过程中使用到的技术点和框架,通过研究这些技术的原理后,在本设计中加以应用,包括菜谱数据可视化信息采集的爬虫技术,数据持久化存储技术,以及基于Flask框架的系统后台技术,通过预研上述技术点并加以应用从而开发出基于Flask的菜谱数据可视化分析系统。
3 菜谱数据可视化信息Flask分析系统实现
3.1 系统可行性分析
3.1.1可行性研究
通过对系统研究目标及内容的分析审察后,提出可行性方案,并对其进行论述。主要从技术可行性出发,再进一步分析经济可行性和操作可行性等方面。
3.1.2 经济可行性
开发系统所涉及到的资料,一般是在图书馆查阅,或是在网上进行查找收集。开发过程使用到的IDE一般也是开源的,因此,开发成本是几乎为零。但是开发出来的系统,还是具有高效率,低成本,较高质量的。所以,从经济可行性的角度,该系统符合标准。
3.1.3技术可行性
从技术可行性而言,由于本人一直是计算机相关专业,在大学期间也一直学习的就是计算机和Flask相关技术,如Flask,Python,HTML等,这次毕设更是对自己的专业知识的一次实际应用,使自己对知识的理解更加深厚,因此从技术可行性而言也是没有问题的。
3.1.4 运行可行性
由于本人在日常学习的过程中也会经常使用到本文设计中所设计的计算框架,这些框架的版本都是经过本人的经验和查阅资料后确定的,另外本文使用的是个人笔记本开发,不使用大量的服务器资源,因此运行可行性是满足的。
3.1.5 时间可行性
从时间上看,由于本人很早就确立了论文的题目,因此很早就开始了基础技术的研究,有了一定的基础理论支撑,然后开发程序的时间也是足够的,并且预留了一定的时间去修复整个系统的BUG,因此从时间上来说是完全可行的。
3.2 系统实现流程
通过前面的功能分析可以将基于Flask的菜谱数据可视化分析系统的研究与实现的功能主要包括用户登录、菜谱数据信息管理、数据分析等内容。后台管理是针对已登录的用户看到满意的电商菜谱数据可视化分析而设计的。
(1)明确目的
在设计菜谱数据可视化信息Flask分析平台初期需要了解如何获取菜谱数据可视化信息原始数据是非常基础也是关键的一步。要了解Flask分析平台期望达到什么样的运营效果,从而在标签体系构建时对数据深度、广度及时效性方面作出规划,确保底层设计科学合理。
(2)数据采集
只有建立在客观真实的数据基础上,Flask计算分析的结果才有效。在采集数据时,需要考虑多种维度,比如不同厂商菜谱数据可视化、不同品牌销量数据、不同价位的销量数据等等,还可以通过行业调研、用户访谈、用户信息填写及问卷、平台前台后台数据收集等方式获得。
(3)数据清洗
就对于各大菜谱数据网站或者APP平台采集到的数据而言,可能存在非目标数据、无效数据及虚假数据,因而需要过滤原始数据,去除一些无用的信息以及脏数据,便于后续的处理。
(4)特征工程
特征工程能够将原始数据转化为特征,是一些转化与结构化的工作。在这个步骤中,需要剔除数据中的异常值并将数据标准化。
(5)数据计算
在这一步我们将得到的数据存储到Flask分析平台,通过开发MapReduce程序对原始数据进行计算,将不同维度的结果存储到Mysql中。
(6)数据展示
分析结果可以通过Flask后台展示到前端界面,对于普通用户而言,只需要登录到该后台系统,就可以获取到菜谱数据可视化分析后的计算结果,从而了解行业的菜谱数据情况,对于用户而言可以非常清晰的分析出各大品牌的菜谱数据情况。
3.3 系统平台架构
在任何信息系统当中有价值的数据都是必不可少的重要部分,如何通过手上的资源获取得到有价值的数据便是开发系统。首先需要考虑的问题根据系统的功能设计数据获取和处理的流程以及其实现方法都已经基本上确定获取和处理流程。
由于Flask开发需要搭建集群环境,而集群环境一般都要求位于同一局域网内的多台机器,由于多台机器从购买和维护的成本的角度上而言都是比较昂贵的,这对于普通开发者而言是一笔不小的费用,因此本文拟使用Vmware虚拟机搭建Flask集群环境。
Vmware可以提供用户开发、测试、部署新的应用程序的最佳解决方案。Vmware具有不同系统内核的多个版本的工具包镜像,如Ubuntu,CentOS等,本文选择CentOS版本的镜像,CentOS是免费的、开源的、可以重新分发的开源操作系统,是Linux发行版之一。而Flask集群即HDFS集群和YARN集群又依赖于Linux内核,因此选择CentOS版本的镜像最为合适,这样即可在独立的服务器上实现Flask集群的部署。
3.4 分析程序设计
菜谱大数据分析流程通常包括以下几个主要步骤:
数据收集:
从各种来源(网站、应用程序等)获取菜谱数据,包括菜谱名称、食材、制作步骤、营养信息等。
可以使用网络爬虫技术自动抓取数据,或者通过API接口获取数据。
创建一个新的Scrapy项目:
bash
scrapy startproject recipescrapercd recipescraper
在recipescraper/spiders目录下创建一个名为recipe_spider.py的文件,包含以下代码:
python
import scrapy
class RecipeSpider(scrapy.Spider):
name = 'recipe_spider'
start_urls = [
'http://example.com/recipes' # 替换成实际的菜谱网站URL
]
def parse(self, response):
for recipe in response.css('div.recipe'):
name = recipe.css('h2::text').get()
ingredients = recipe.css('ul.ingredients li::text').getall()
instructions = recipe.css('ol.instructions li::text').getall()
yield {
'name': name,
'ingredients': ingredients,
'instructions': instructions
}
next_page = response.css('a.next_page::attr(href)').get()
if next_page:
yield response.follow(next_page, callback=self.parse)
在上面的代码中,RecipeSpider是一个简单的Spider,用于从网页中提取菜谱数据。
数据清洗与预处理:
对收集到的数据进行清洗,处理缺失值、异常值等问题。进行数据格式转换,确保数据格式统一规范。可以进行文本处理、标准化食材名称等预处理操作。
特征提取:
从菜谱数据中提取特征,例如菜谱分类、主要食材、难度级别、制作时间等特征。可以利用自然语言处理技术提取关键词、实体等信息。
数据分析:
利用统计分析和机器学习技术对菜谱数据进行分析,挖掘数据背后的规律和趋势。可以进行菜谱热度分析、食材关联分析、制作时间预测等分析任务。
建模与预测:
基于历史菜谱数据构建预测模型,预测菜谱受欢迎程度、制作难度等指标。
可以使用机器学习算法如回归分析、分类器等进行建模和预测。
表3-1 菜谱数据可视化分析代码
import pandas as pdimport matplotlib.pyplot as plt # 读取菜谱数据 recipes_data = pd.read_csv('recipes.csv') # 数据清洗和处理 recipes_data.dropna(inplace=True) # 删除缺失值 recipes_data['Calories'] = recipes_data['Calories'].str.replace(' kcal', '').astype(float) # 将卡路里转换为浮点数 # 统计菜谱数量和卡路里分布 num_recipes = len(recipes_data) calories_distribution = recipes_data['Calories'].plot(kind='hist', bins=20) # 显示统计结果print(f"菜谱总数: {num_recipes}") plt.xlabel('卡路里') plt.ylabel('菜谱数量') plt.title('菜谱卡路里分布') plt.show( |
之后,还需要定义一个主类用于管理上述的作业,Flask框架会将上述的分析和协同过滤任务拆分为一个个的job,并提交到python上管理执行。下表3-2为菜谱数据可视化信息所属种类分析作业管理类的主要逻辑。
表3-2 菜谱数据库模型类
from sqlalchemy import create_engine, Column, Integer, Stringfrom sqlalchemy.ext.declarative import declarative_base # 创建数据库连接 engine = create_engine('sqlite:///recipes.db', echo=True) Base = declarative_base() # 定义菜谱数据模型class Recipe(Base): __tablename__ = 'recipes' id = Column(Integer, primary_key=True) name = Column(String) ingredients = Column(String) instructions = Column(String) calories = Column(Integer) def __repr__(self): return f"<Recipe(name='{self.name}', calories={self.calories})>" # 创建表格 Base.metadata.create_all(engine) |
假设有一个包含菜谱数据的DataFrame,然后使用TF-IDF向量化菜谱的食材,并计算菜谱之间的相似度。接着定义了一个函数get_recommendations来基于相似度进行菜谱推荐,最后输入一个菜谱名称,获取推荐的菜谱结果。
# 导入所需的库import pandas as pdfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.metrics.pairwise import linear_kernel # 假设有一个包含菜谱数据的DataFrame recipes_data = { 'recipe_id': [1, 2, 3], 'recipe_name': ['红烧肉', '麻婆豆腐', '糖醋排骨'], 'ingredients': ['猪肉、酱油、糖', '豆腐、肉末、豆瓣酱', '排骨、醋、糖'] } recipes_df = pd.DataFrame(recipes_data) # 使用TF-IDF向量化菜谱的食材 tfidf = TfidfVectorizer(stop_words='chinese') tfidf_matrix = tfidf.fit_transform(recipes_df['ingredients']) # 计算菜谱之间的相似度 cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix) # 定义一个函数来基于相似度进行菜谱推荐def get_recommendations(recipe_name, cosine_sim=cosine_sim): idx = recipes_df[recipes_df['recipe_name'] == recipe_name].index[0] sim_scores = list(enumerate(cosine_sim[idx])) sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True) sim_scores = sim_scores[1:4] # 获取与当前菜谱最相似的前3个菜谱 recipe_indices = [i[0] for i in sim_scores] return recipes_df['recipe_name'].iloc[recipe_indices] # 输入一个菜谱名称,获取推荐菜谱 recipe_name = '红烧肉' recommendations = get_recommendations(recipe_name)print('针对菜谱{}的推荐菜谱是:'.format(recipe_name))for rec in recommendations: print(rec) |
数据可视化:
将分析结果通过图表、图形等形式直观展示,帮助用户理解和使用分析结果。可以使用Python的matplotlib、seaborn等库进行数据可视化。
# 导入所需的库import pandas as pdimport matplotlib.pyplot as plt # 假设有一个包含菜谱数据的DataFrame recipes_data = { 'recipe_name': ['红烧肉', '麻婆豆腐', '糖醋排骨'], 'likes': [1000, 800, 1200], 'calories': [500, 300, 600] } recipes_df = pd.DataFrame(recipes_data) # 可视化菜谱的点赞数和卡路里 plt.figure(figsize=(10, 6)) plt.subplot(1, 2, 1) plt.bar(recipes_df['recipe_name'], recipes_df['likes'], color='skyblue') plt.xlabel('菜谱名称') plt.ylabel('点赞数') plt.title('菜谱点赞数统计') plt.subplot(1, 2, 2) plt.bar(recipes_df['recipe_name'], recipes_df['calories'], color='salmon') plt.xlabel('菜谱名称') plt.ylabel('卡路里') plt.title('菜谱卡路里统计') plt.tight_layout() plt.show() |
4 后台系统实现
本文设计的基于Flask的菜谱数据可视化信息分析系统的后台系统采用的是Flask框架实现的,这是一种MVC模式的开发框架,通过在表现层接收前端传入的参数,将在控制层进行逻辑分发,再调用Service进行不同业务的处理,最后去操作数据库进行数据的CRUD,从而实现指定的功能。前端使用的是HTML展示,页面展示使用Echarts技术,在数据持久层使用的是MySQL数据库。本文将在第四章介绍本系统后台的搭建过程,技术选型,以及后台代码配置等,最后以具体页面的详情图描述了本系统的常用的基本功能。
4.1 开发环境与配置
4.1.1 开发环境
本系统设计基于 B/S 架构,其中服务器包括应用服务器和数据库服务器。 这种架构模式,使用户只需要在有网络的地方即可通过浏览器访问,而不需要再安装客户端软件,交互性更强。基于Flask的菜谱数据可视化信息分析平台使用Pycharm 集成开发工具。而系统运行配置时,选择应用 本地来部署 Web 服务器来保障平台的正常运行, 本地是Apache的核心项目,其技术先进、性能稳定并且开源免费, 因而被普遍应用 。 本系统的主要开发环境以及开发工具如表 4-1 所示。
表4-1 系统开发环境和工具
项目 | 系统环境及版本 |
硬件环境 | Windows 64 位操作系统 |
开发语言 | Python |
Web服务器 | 本地 |
数据库 | MySql |
开发工具 | Pycharm |
项目架构 | Flask |
4.1.2 框架配置介绍
本系统使用集成开发工具 Pycharm进行开发, 由于 Pycharm中本地配置详细资料有很多, 不做详细赘述, 本文主要介绍 Flask 框架及 Shiro 框架的配置。首先需要在项目中中引入各框架以及数据库连接等所需要的 jar 包。
4.1.3 数据库的设计
整个系统的最重要的一部分就是对数据持久层的设计,因为整个系统的每个操作,包括注册登录,查询,展示其实都是对数据库的操作,因此如何设计一个健壮,扩展性强的数据库是非常必要的。
根据功能模块的划分结果可知,本系统的用户由于使用账号和密码进行登录,因此在本系统中需要分别进行数据记录。首先根据如下6个数据实体:用户、菜谱数据信息等数据库表。
4.2 系统功能模块实现
4.2.1登录认证
当用户执行登陆操作时,后台会从前端传过来的参数中拿到用户名和密码,并查询数据库,通过findUserByName方法查询该用户的密码字段,再将查询的结果和前端传过来的密码参数字段进行比对,如果相同,则匹配成功用户直接跳转到登录成功后的欢迎界面;如果匹配失败则需提前前端继续输入正确的密码直到登录成功。用户登录具体流程如时序图如4-2所示。
一
图4-1登录认证流程图
菜谱数据可视化信息Flask分析系统的用户登录界面如下图所4-3所示:
图4-2用户登录界面
登陆成功后,系统会成功跳转至首页,在首页中,位于上方的横栏是对本系统的基本信息的描述和欢迎登录效果,另外登录用户的用户名也会显示在首页中,可直接表明用户已成功登录。左侧则是本系统的导航菜单,可折叠展示,较为方便,右方则为欢迎页效果。菜谱数据可视化信息Flask分析系统的首页界面如下图所4-3所示:
图4-3菜谱数据可视化信息Flask系统首页界面
4.2.2推荐和热门菜谱数据信息管理功能
菜谱数据可视化信息管理功能是对菜谱数据可视化信息进行查询,删除等操作的功能集合,菜谱数据可视化信息管理功能使用到了菜谱数据可视化信息表t_tv, 菜谱数据可视化信息表t_tv的主要数据字段,结构,类型及描述如下表4-2所示。
表4-2 菜谱数据可视化信息表字段
字段名称 | 数据类型 | 是否允许为空 | 描述 |
id | int | 不允许 | 自增主键,唯一ID |
title | String | 允许 | 菜谱标题 |
price | String | 允许 | 菜谱数据价格 |
brand | String | 允许 | 所属种类 |
model | String | 允许 | 子品类 |
shop_name | String | 允许 | 学名 |
comment_count | String | 允许 | 仓库数量 |
url | String | 允许 | 菜谱数据详情URL |
crawl_date | String | 允许 | 时间 |
菜谱数据可视化信息Flask分析系统的菜谱数据可视化信息管理功能界面如下图所4-5所示:
图4-4菜谱数据管理界面
菜谱数据可视化信息管理
功能流程功能图如图3-6所示:
图4-6 菜谱数据可视化信息管理功能流程图
通过“菜谱数据可视化信息管理”按钮,进入菜谱数据可视化信息界面,用户可以看到菜谱数据列表,例如:电菜谱数据牌、所在商铺名称、电商售价、菜谱数据数量、菜谱数据详情、菜谱数据时间的详细信息。通过此界面,用户可以对电商菜谱数据可视化信息进行删除管理操作。
4.2.3菜谱数据可视化看板功能
数据可视化模块就是对我们采集和计算的分析结果的展示。数据分析模块的数据进行一个精美而又直接的展示,我们采用大屏的方式进行展示,展示数据结构分明,背景具有科技感,把相对复杂的、抽象的数据通过可视的、交互的方式进行展示,从而形象直观地表达数据蕴含的信息和规律。
菜谱数据可视化信息Flask看板界面如图4-7所示。
图4-8菜谱数据可视化信息数据分析界面
菜谱数据可视化信息Flask分析可视化看板的功能较为丰富,由图可知,用户在登录本系统后,可以很清楚的读懂目前市场上的电商菜谱数据行情,如什么品牌的菜谱数据最高,那个价格区间的菜谱数据最高等等,这对用户而言是十分关注的,因此如何开发出美观的可视化界面也是一项不可或缺的工作。本文使用了图形,表格,地图等各种方式联动数据,十分直观。另外本文使用了Echarts中地图、线条等组件,将分析结果较为直观的展示给平台用户,使得用户能够简便的获取有效的信息。
4.3 本章小结
本章主要分析了基于Flask的菜谱数据分析系统的设计与实现系统开发过程中使用到的技术和具体的实现步骤,这其中主要介绍了菜谱数据Flask分析平台的搭建环境和开发步骤,包括程序中的一些数据库配置等。前端页面采用的是HTML实现。
5 总结与展望
5.1 系统开发遇到的问题
(1)本系统的开发有助于那些有梦想的菜谱数据分析人员,但是本人的能力和经验有限,菜谱数据可视化分析系统也受多种因素影响,所以本系统并不完美,日后在个人能力允许下会继续升级系统,将其更加的完善,创造更大的作用。
(2) 由于基于Flask菜谱数据可视化信息分析平台是由本人独立开发,因此在系统设计和业务逻辑方面更多地借鉴了目前市场上较为流行的框架和技术点,包括Flask技术,很多是不熟悉没接触过的,在开发过程中不断学习新知识。另外由于本人的时间和精力的原因,在系统开发过程中有很多地方可能并不能够完全尽如人意,还有许多需要补充的功能与模块。
5.2 总结与展望
为保证有足够的技术能力去开发本系统,首先本人对开发过程中所用到的工具和技术进行了认真地学习和研究,详细地钻研了基于Python的Flask框架以及 Echarts,CSS,HTML等前端开发技术。
然后从菜谱数据可视化Flask分析平台需求分析开始 ,到整体框架的设计以及各个详细功能的设计具体实现,最后基于Flask平台的菜谱数据可视化信息分析系统的基础架构和详细功能已经大致开发完毕,并将其部署在本地服务器当中运行,用户可以登录使用该系统进行菜谱数据可视化信息的筛选,同时查询筛选的分析结果。
[1] 中国农业市场数据发布报告2020Q1&2020Q2e[A]. 上海艾瑞市场咨询有限公司.艾瑞咨询系列研究报告(2020 年第6期) [C]: 上海艾瑞市场咨询有限公司,2020:25.
[2] 刘维维,电信行业中基于数据仓库和数据挖掘技术的决策支持系统[D]中国科技信息,2006(07):180-181.
[3] 岳亚娜孟凡胜电商社交营销对策浅析[J]科技经济导刊2021,2901);169-170
[4] 任宏伟基于异常检测技术的数据防爬系统设计与应用.中国科学院大学(工程管理与信息技术学院).2016.
[5] 倪星字,基于Flask云计算平台的构建[J],微型电脑应用,2020,36(12);103-105.
[6] 王玻璇MapReduce 下差分隐私保护技术研究与实现[D]南京邮电大学,2020.
[7] 郑楠,我国开放政府数据的价值增值方式解析[J]新西部(理论版)2016(13):68.
[8]叶惠仙,基于HaopHle技术的菜谱数据网站数据分析研究口,网络安全技术与应用,202012)77-79.
[9] An efficient approach for land record classiffication and information retrieval in data warehouse. International journal of Computers and Applications 2021.(1)
[10]王佳珙Flask平台下调度算法及其改进策略研究[D]北京邮电大学,2016.
[11]张兴,基于Flask的云存储平台的研究与实现[D]电子科技大学.2013.
致 谢
在大学的校园里,我度过了难忘的学习生活。在这期间,我从周围的老师和同学身上学到了很多知识,并且建立了深厚的感情。
四年时间过的飞快,已经到了书写自己毕业论文的节点,回想过去的四年,充满了无数的欢乐,也学习了不少专业知识,这也更加丰富了我的大学生活。因此我要我的学院里的每一位教师,是你们教会了我的专业知识,让我具有了一技之长,同时还要感谢指导老师对我毕业设计的指导。
然后,感谢给子我帮助的朋友们,是你们让我的学习生涯更加温暖,让我能更加坚定的追求自己想要的生活。两年来,我们一起相互支持彼此的信念,一起学习新的知识,起解决遇到的各种问题, 不管我们选择的道路最终是否能够达到自己的理想,但愿我们能够友谊长存。
最后,我要感谢父母,是你们培养了我。
附 录
附录正文。