集成算法

集成算法

目的:让机器学习效果更好

Bagging模型

各个弱学习器之间没有依赖关系,可以并行拟合,如随机森林。

随机森林其中随机就是数据采用随机,特征选择随机,其中森林就是很多决策树并行放在一起。由于二重随机性,使得每个树基本上都不会相同,所以最终的结果也不同。

 

Boosting模型

个弱学习器之间有依赖关系,如Adaboost、Xgboost算法

Adaboost会根据前一次的分类效果调整数据权重。最终的结果是每个分类器根据自身的准确性来确定各自的权重,在串行组合在一起。

 

Stacking

聚合多个分类或回归模型(分阶段来做)

把各种各样的分类器堆叠在一起(KNN,SVM,RF等),第一阶段得出各自结果,第二阶段再用前一阶段训练。

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值