46、使用模糊集和粗糙集方法处理机器学习中的不平衡和弱标签数据

使用模糊集和粗糙集方法处理机器学习中的不平衡和弱标签数据

1 引言

在机器学习中,不平衡和弱标签数据是两个常见的挑战。不平衡数据指的是数据集中某些类别的样本数量远多于其他类别;弱标签数据则是指数据标签不完全或不准确。这两种情况都会影响分类器的性能,尤其是当少数类或弱标签数据是我们关注的重点时。为了应对这些挑战,模糊集和粗糙集方法因其处理不确定性和模糊性的能力而显得尤为重要。

2 不平衡数据的处理

2.1 不平衡数据的定义与挑战

不平衡数据通常出现在多类分类问题中,其中某些类别的样本数量远超其他类别。不平衡数据的挑战在于,传统分类算法倾向于优先预测多数类,从而导致少数类的分类错误率较高。不平衡数据的例子包括医学诊断、欺诈检测和生物信息学等领域。

不平衡比率(IR) 是衡量数据集不平衡程度的重要指标。对于二分类问题,IR定义为多数类与少数类样本数量的比例。对于多类分类问题,IR可以扩展为:

[ \text{IR} = \frac{\max_{C \in C} |C|}{\min_{C \in C} |C|} ]

其中 ( C ) 是所有类别的集合,( |C| ) 表示类别 ( C ) 的样本数量。

2.2 处理不平衡数据的方法

为了应对不平衡数据,研究者们提出了多种方法,包括但不限于:

  • 重采样 :通过过采样少数类或欠采样多数类来平衡数据集。
  • 成本敏感学习 :赋予不同类别不同的错误代价,
源码地址: https://pan.quark.cn/s/d1f41682e390 miyoubiAuto 米游社每日米游币自动化Python脚本(务必使用Python3) 8更新:更换cookie的获取地址 注意:禁止在B站、贴吧、或各大论坛大肆传播! 作者已退游,项目维护了。 如果有能力的可以pr修复。 小引一波 推荐关注几个非常可爱有趣的女孩! 欢迎B站搜索: @嘉然今天吃什么 @向晚大魔王 @乃琳Queen @贝拉kira 第三方库 食用方法 下载源码 在Global.py中设置米游社Cookie 运行myb.py 本地第一次运行时会自动生产一个文件储存cookie,请勿删除 当前仅支持单个账号! 获取Cookie方法 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 按刷新页面,按下图复制 Cookie: How to get mys cookie 当触发时,可尝试按关闭,然后再次刷新页面,最后复制 Cookie。 也可以使用另一种方法: 复制代码 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 控制台粘贴代码并运行,获得类似的输出信息 部分即为所需复制的 Cookie,点击确定复制 部署方法--腾讯云函数版(推荐! ) 下载项目源码压缩包 进入项目文件夹打开命令行执行以下命令 xxxxxxx为通过上面方式或取得米游社cookie 一定要用双引号包裹!! 例如: png 复制返回内容(包括括号) 例如: QQ截图20210505031552.png 登录腾讯云函数官网 选择函数服务-新建-自定义创建 函数名称随意-地区随意-运行环境Python3....
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值