脚滑的狐狸160
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
15、数据挖掘相关主题与生物信息学应用
本文综述了数据挖掘中的多个核心主题,包括树数据挖掘、时间序列数据挖掘、文本数据挖掘及事务性与关系数据的特点,重点探讨了部分周期性模式挖掘的形式化定义、研究进展及其在市场营销、交通和能源等领域的实际应用。文章深入介绍了生物信息学中的序列数据挖掘技术,涵盖微阵列数据、质谱数据和蛋白质结构分析,并讨论了序列比对方法及其质量评估。结合NCBI、Pfam、Swiss-Prot等重要生物数据库资源,阐述了数据挖掘在生物医学中的关键作用。最后展望了数据挖掘与人工智能融合的发展趋势,以及生物信息学在精准医疗、疾病预防和药物原创 2025-11-16 03:47:18 · 50 阅读 · 0 评论 -
14、序列模式挖掘:区分性、意外性与结构化数据探索
本文深入探讨了序列模式挖掘中的区分性、意外性及结构化数据探索。首先介绍了ConSGapMiner算法及其对最大和最小间隔约束的扩展,进而提出基于覆盖和前缀的模式最小化策略以保留更多有用模式。随后讨论了意外序列模式的定义与检测方法,并将序列挖掘置于更广泛的结构化数据挖掘框架下,涵盖树、图、时间序列和文本数据的挖掘技术。文章还总结了当前面临的挑战与未来发展趋势,如多模态融合、深度学习结合、实时挖掘与可解释性提升,展示了该领域在生物信息学、社交网络等众多场景中的广泛应用前景。原创 2025-11-15 12:48:45 · 16 阅读 · 0 评论 -
13、序列模式挖掘:区分序列模式与ConSGapMiner算法
本文介绍了类特征区分序列模式的概念及其在蛋白质家族比较、文本分析等领域的应用,重点阐述了ConSGapMiner算法如何高效挖掘具有最大间隙约束的最小区分子序列(g-MDS)。该算法通过字典序深度优先搜索、基于位集的支持度与间隙检查以及后处理最小化三个核心步骤,结合剪枝策略和前缀树优化,显著提升了序列模式挖掘的效率与准确性。原创 2025-11-14 12:24:27 · 18 阅读 · 0 评论 -
12、序列数据中的偏序挖掘与区分序列模式
本文深入探讨了从序列数据中挖掘偏序与区分序列模式的技术与应用。在偏序挖掘方面,介绍了Frecpo算法的高效剪枝优势及其在生物信息学、过程模型、网络管理和偏好服务中的广泛应用,并详细阐述了基于构造树和贪心搜索的全局偏序挖掘方法,以及处理冲突数据的混合模型。在区分序列模式方面,定义了四种类型:位置特征、位置-类特征、类特征区分模式及意外序列模式,提出了相应的挖掘流程与评估方法,并展示了其在基因分析、客户行为识别和入侵检测等场景的应用价值。文章最后对比了两类技术的特点,展望了算法优化、多领域融合、实时挖掘与可解释原创 2025-11-13 15:22:34 · 17 阅读 · 0 评论 -
11、序列中挖掘部分顺序的方法与算法
本文探讨了从字符串数据库中挖掘频繁闭部分顺序的方法与算法。首先定义了顺序模式、闭顺序模式以及图模式之间的关系,并阐述了频繁部分顺序与频繁项集、闭模式之间的联系。随后,文章对比了顺序模式挖掘、部分顺序挖掘与本文关注的频繁闭部分顺序挖掘的区别,指出其在处理非全局主导顺序和复杂依赖结构中的优势。接着介绍了基础方法TranClose,该方法通过将字符串转换为传递闭包并转化为事务数据库来挖掘频繁闭边集,但存在空间和I/O开销大的问题。为解决此问题,提出了高效算法Frecpo,采用深度优先搜索框架,结合支持度修剪、禁止原创 2025-11-12 14:10:46 · 16 阅读 · 0 评论 -
10、序列数据挖掘:模式发现与偏序挖掘
本文深入探讨了序列数据挖掘中的多种核心方法,包括序列模式概率计算、基于Gibbs采样的PWM基序构建、基于期望最大化的HMM模型训练以及偏序挖掘技术。文章详细阐述了各算法的原理与实现步骤,并通过实例展示了其在教育、生物信息学和商业等领域的应用价值。同时比较了不同方法的优缺点,提出了未来研究方向,如高效基序挖掘与聚类结合模型构建,为序列数据分析提供了系统性的理论支持与实践指导。原创 2025-11-11 13:53:21 · 11 阅读 · 0 评论 -
9、序列基序:识别与表征序列家族
本文系统介绍了序列基序识别与表征序列家族的核心模型与算法。从基础的位置权重矩阵(PWM)及其伪计数方法出发,逐步扩展到考虑位置依赖关系的马尔可夫链模型、插值马尔可夫模型(IMM),并深入探讨了隐马尔可夫模型(HMM)及其在序列分析中的三大经典问题与解法。重点阐述了轮廓HMM的结构优势,并引入动态规划方法解决HMM中的序列评分与状态路径推断问题,涵盖前向算法与维特比算法的原理及实现。最后简要提及吉布斯采样和期望最大化等代表性算法,全面构建了序列基序分析的技术体系,为生物信息学研究提供了理论支持与工具指导。原创 2025-11-10 15:12:11 · 14 阅读 · 0 评论 -
8、序列聚类与基序分析:原理、方法与应用
本文系统介绍了序列聚类与基序分析的原理、方法及应用。内容涵盖加权图切割法(WGCM)、高连通子图法(HCS)和马尔可夫聚类法(MCL)等聚类算法,以及聚类结果的内部与外部质量评估方法。在基序分析方面,详细阐述了基序表示、发现、评分与解释四大核心问题,比较了共识序列与位置权重矩阵(PWM)的优缺点及其适用场景,并给出了实际操作流程。文章最后展望了基序分析在深度学习背景下的发展趋势,为生物信息学研究提供了全面的方法论支持。原创 2025-11-09 12:18:31 · 16 阅读 · 0 评论 -
7、序列数据的分类与聚类方法解析
本文深入探讨了序列数据的分类与聚类方法,涵盖支持向量机(SVM)、人工神经网络(ANN)等分类技术,以及层次聚类和基于图的聚类算法。文章详细解析了各类方法的原理、适用场景及优缺点,并介绍了URL序列相似度计算方式和多种性能评估指标。结合实际应用考虑因素,如数据规模、分布和维度,为序列数据分析提供了系统性的方法指导,适用于生物信息学、网络分析等领域。原创 2025-11-08 13:42:45 · 12 阅读 · 0 评论 -
6、序列数据的分类、聚类、特征与距离
本文系统介绍了序列数据在分类与聚类任务中的核心方法与技术,涵盖序列特征的类型与选择标准,包括k-克、k-间隔对、累积运行计数等显式与隐式特征,并讨论了基于频率和区分性的特征选择策略。文章详细分析了多种序列距离函数,如基于字符比对的编辑距离与汉明距离、基于特征的d2距离、基于条件概率分布的距离以及Web会话相似性计算方法。进一步介绍了基于特征和基于距离的分类算法,以及基于距离和模型的聚类方法,并提供了轮廓系数和兰德指数等聚类质量评估指标。整体内容为序列数据挖掘提供了全面的方法论支持。原创 2025-11-07 10:42:36 · 17 阅读 · 0 评论 -
5、序列模式挖掘:带约束与闭序列模式的深入探讨
本文深入探讨了序列模式挖掘中的两个重要方向:带约束的序列模式挖掘与闭序列模式挖掘。针对棘手的聚合约束(如avg和sum),介绍了基于Prefix-growth方法的有效处理策略,包括项序确定、无前景项修剪和模式标记机制。同时,阐述了闭序列模式的定义及其高效挖掘算法BIDE,利用双向扩展闭检查实现搜索空间的显著压缩。文章进一步分析了两者之间的相互影响,并结合电子商务与医疗领域的实际应用,展示了这些技术在提升挖掘效率与结果可读性方面的价值。最后展望了未来在复杂约束处理与高性能挖掘算法上的研究方向。原创 2025-11-06 12:04:30 · 15 阅读 · 0 评论 -
4、序列模式挖掘中的约束应用与优化
本文探讨了序列模式挖掘中的约束应用与优化方法,重点介绍了如何利用约束提高挖掘效率。文章分析了多种约束类型,包括项约束、长度约束、超模式约束、聚合约束、正则表达式约束等,并根据反单调性、单调性和简洁性对约束进行分类。针对不具有传统单调性质的约束,提出了前缀单调约束的概念,并设计了Prefix-growth算法,将前缀单调约束深度融合到基于PrefixSpan的模式增长框架中。该算法通过投影数据库缩小搜索空间,结合分治策略和伪投影技术,显著提升了带约束序列模式的挖掘效率。实验表明,该方法在处理正则表达式等复杂约束时原创 2025-11-05 09:13:35 · 13 阅读 · 0 评论 -
3、频繁闭合序列模式挖掘方法解析
本文深入解析了频繁闭合序列模式挖掘中的核心方法,重点对比了Apriori类广度优先搜索算法(如GSP)与PrefixSpan模式增长的深度优先搜索方法。详细阐述了候选序列生成的问题、投影数据库的构建机制以及伪投影技术在空间和时间效率上的优势与局限性。介绍了PrefixSpan算法如何通过分治策略和递归投影有效减少搜索空间,提升长序列模式挖掘效率,并结合实际应用场景分析其适用性。最后总结了不同投影方法的选择策略及未来研究方向,展示了PrefixSpan在序列模式挖掘中的显著优势和发展潜力。原创 2025-11-04 10:16:48 · 13 阅读 · 0 评论 -
2、数据挖掘中的序列模式挖掘:概念、方法与应用
本文系统介绍了数据挖掘中的序列模式挖掘技术,涵盖基本概念、核心方法与广泛应用。文章首先概述了数据挖掘的典型流程及关键技术问题,随后深入阐述序列模式的定义、形式化表示及其在营销等领域的应用价值。重点讲解了基于Apriori性质的GSP算法,并探讨了约束序列模式挖掘与闭序列模式挖掘以提升结果的有效性与精简性。进一步展示了该技术在生物信息学、医疗分析、安全与灾害预防等多个领域的拓展应用,最后分析了当前面临的挑战及未来发展方向,包括大规模数据处理、模式评估优化和动态增量挖掘等问题。原创 2025-11-03 14:49:55 · 12 阅读 · 0 评论 -
1、序列数据挖掘:概念、应用与挑战
本文系统介绍了序列数据挖掘的基本概念、主要应用与核心挑战。涵盖了DNA、蛋白质、网络日志、客户购买等典型序列数据类型,并详细阐述了频繁子序列挖掘、序列分类与聚类等关键任务。文章还定义了序列的元素类型、模式形式及支持度计算方法,比较了不同序列模式的特点与应用场景。最后分析了序列数据挖掘在模式发现与预测分析中的机遇,以及高维数据处理和位置意义建模等方面的挑战,为相关研究与实践提供了全面的理论框架和技术参考。原创 2025-11-02 09:17:22 · 12 阅读 · 0 评论
分享