上期我们介绍了2020年知识图谱最新权威综述论文《A Survey on Knowledge Graphs: Representation, Acquisition and Applications》的知识图谱实体发现部分,本期我们将一起学习这篇论文的关系抽取部分。
论文地址:
https://arxiv.org/pdf/2002.00388.pdfarxiv.org
关系抽取作为自动化构建知识图谱过程中非常重要的一个技术,近年来得到越来越多的关注。
关系抽取
关系抽取是从纯文本中提取未知关系事实并将其加入到知识图谱中,是自动构建大规模知识图谱的关键。由于缺少标记的关系数据,远程监控(distance supervision)也称为弱监控或自监督,通过假设包含相同实体的语句在关系数据库的监督下可以表示相同的关系,使用启发式匹配来创建训练数据。Mintz等人采用了远程监控的关系分类方法,文本特征包括词汇和句法特征、命名实体标记和连接特征。传统方法高度依赖于特征工程,最近一种方法探索了特征之间的内在关联。深度学习正在改变知识图谱和文本的表示学习。本节回顾了神经关系提取(NRE)方法的最新进展,如下图所示。

1 神经关系抽取
神经网络广泛应用于关系抽取任务中。具有相对实体距离位置特征的CNN最早用来进行关系分类,然后利用多窗口CNN和多尺度卷积核进行关系抽取。多示例学习以一个bag的句子作为输入,预测实体对之间的关系。PCNN对按实体位置划分的卷积表示段应用分段最大池化。与普通的CNN相比,PCNN能够更有效地捕捉实体对内的结构信息。MIMLCNN进一步将其扩展到多标
关系抽取技术概览

最低0.47元/天 解锁文章
1728

被折叠的 条评论
为什么被折叠?



