“知识图谱+”系列:知识图谱+图神经网络

最近有很多朋友联系泽宇说想了解一些知识图谱和图神经网络(GNN)结合的研究。那泽宇当然要满足朋友们的要求啊,本期泽宇从知识图谱的几个不同研究方向总结了结合GNN的经典研究,也和大家一起分享。所有内容是泽宇查阅了很多顶会论文,对每一类挑选出一篇具有代表性的论文进行解读,如有理解有误的地方还请批评指教。

本期是“知识图谱+”系列的第一期“知识图谱+图神经网络”,之后会陆续分享知识图谱+各类方向的技术介绍,敬请关注。

为了方便大家一起交流讨论知识图谱技术,知识图谱学术交流群已经成立了,感兴趣想要入群的朋友们可以联系泽宇拉大家入群。

预备知识:

图神经网络:个人认为,图神经网络最直观的理解就是对于一个图结构的输入数据,由于每个节点和其邻域中的节点都具有紧密的关联,因此用图神经网络可以将每个节点的领域信息聚合起来更新当前节点的表示。但是知识图谱和传统的图网络结构最大的不同在于,知识图谱是一个多关系图数据结构,每对节点之间连接的边的类型可能是不一样的,因此,针对知识图谱需要设计更特殊的图神经网络来建模知识图谱。

知识图谱嵌入:知识图谱嵌入是将知识图谱中的实体和关系转换为数值化的表示,可以看成一个基础任务,学习出的嵌入表示可以用于各种和知识图谱相关的任务,本期介绍的和GNN结合的研究很多都需要用到知识图谱嵌入技术,因此,希望入门了解知识图谱嵌入的朋友可以看之前专门对知识图谱嵌入的总结文章:

年末巨制:知识图谱嵌入方法研究总结

1 知识图谱表示学习

Modeling Relational Data with Graph Convolutional Networks. ESWC 2018.

Michael Schlichtkrull, Thomas N. Kipf(GCN的作者), Peter Bloem, Rianne van den Berg, Ivan Titov, Max Welling.

核心贡献:这篇论文是图卷积神经网络(GCN)的发明者参与的一项研究,最大的贡献在于开创性地将GCN用于建模知识图谱这类多关系图网络,而以前的所有图神经网络的模型都只能建模只具有单一关系的图网络。

为了对多关系图网络进行建模,论文提出了多关系GCN,在学习每个实体的表示时,针对当前实体关联的每个关系分别用GCN执行聚合操作,具体过程如下图所示:

核心公式为:

由上式可以发现,每一层RGCN网络针对每一个关系具有一组参数,这也是RGCN能够建模多关系的关键所在,参数Wr类似于是关系的表示。

执行图卷积操作只是为了学习实体的表示,要想实现更多功能还需要额外的模块,本文给出了两个具体的知识图谱中的任务:实体分类链接预测

实体分类:

实体分类任务比较简单,只需要用RGCN学习得到的实体表示接一个分类器模型就可以了,训练的时候采用交叉熵loss函数。

链接预测:

链接预测任务需要利用RGCN学习出的实体表示,再结合知识图谱表示学习的方法共同学习实体和关系的嵌入表示,并通过打分函数评估一个三元组成立的可能性,论文中采用的是DistMult模型,实际可以采用任何知识图谱表示学习模型。整个链接预测的模型结构是一个encoder-decoder框架,RGCN是encoder,知识图谱表示学习模块是一个decoder。

2 实体对齐

Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks. EMNLP 2018. 

Authors: Zhichun Wang, Qingsong Lv, Xiaohan Lan, Yu Zhang. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值