关于影响力最大化问题中贪心算法的一些理解

        在影响力最大化问题中(Influence Maximization,以下简称IM),贪心算法是最早提出的一种解决方法,并且一直沿用至今。它基于IM问题所具有的单调性(Monotonicity)和子模性(Submodularity)使用一种Hill Climbing策略,不断使用Monte Carlo模拟来寻找在当前情况下的具有最大传播范围的节点,添加至种子集合,得到最终结果,算法伪代码如下所示:

        这里算法1其实并没有使用Monte Carlo模拟,而只是使用了贪心的策略,表示在可以准确估计任意节点集S的传播范围的这种理想情况下,通过贪心策略逐步得到结果的过程。

        而在实际情况中,我们无法预先得到节点集S的真实传播范围,只能通过Monte Carlo模拟来估计它的影响范围,故真实的贪心算法如算法2所示:

其中S表示最终得到的种子集结果,k表示最终种子集的大小,R表示每次迭代中,所进行Monte Carlo模拟次数。

        Kempe[1]和Chen Wei[2]证明了贪心算法在R满足一定条件的情况下,可以达到

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值