在影响力最大化问题中(Influence Maximization,以下简称IM),贪心算法是最早提出的一种解决方法,并且一直沿用至今。它基于IM问题所具有的单调性(Monotonicity)和子模性(Submodularity)使用一种Hill Climbing策略,不断使用Monte Carlo模拟来寻找在当前情况下的具有最大传播范围的节点,添加至种子集合,得到最终结果,算法伪代码如下所示:
这里算法1其实并没有使用Monte Carlo模拟,而只是使用了贪心的策略,表示在可以准确估计任意节点集S的传播范围的这种理想情况下,通过贪心策略逐步得到结果的过程。
而在实际情况中,我们无法预先得到节点集S的真实传播范围,只能通过Monte Carlo模拟来估计它的影响范围,故真实的贪心算法如算法2所示:
其中S表示最终得到的种子集结果,k表示最终种子集的大小,R表示每次迭代中,所进行Monte Carlo模拟次数。
Kempe[1]和Chen Wei[2]证明了贪心算法在R满足一定条件的情况下,可以达到