深度学习 -- 神经网络 1

本文介绍了神经网络的基础知识,包括人体神经网络的工作原理、神经网络架构、参数定义、激活函数、损失函数和反向传播算法。通过一个简单的逻辑回归模型的神经网络示例,阐述了神经网络从初始化到前向传播、反向传播和参数更新的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


1. 人体神经网络

image.png-92.5kB

上图为人体的神经网络,其工作原理:

  • 外部刺激通过神经末梢,转化为电信号,转导到神经细胞(又叫神经元)。
  • 无数神经元构成神经中枢。
  • 神经中枢综合各种信号,做出判断。
  • 人体根据神经中枢的指令,对外部刺激做出反应。

随着神经网络的发展,现在已经不再使用上面的示例解释目前的神经网络了。这是因为现在的神经网络有反向传播的过程,但这个在人体的神经网络是没有这个过程的。

2. 神经网络架构

image.png-77.4kB

上图为一个简单的神经网络,每个圆圈代表一个神经元。最左侧为输入层,该层的神经元成为输入单元,最右侧的为输出层,该层神经元为输出单元,中间的层统称为隐藏层,这些层的单元称为隐藏单元。该网络为3层神经网络(输入层不记入网络层数)。

下面根据几个简单的实例来看下神经网络的工作过程。但在此之前,需要先介绍下神经网络中常用的参数:

2.1 神经网络参数

General comments:

  • superscript ( i ) (i) (i) will denote the i t h i^{th} ith training example while superscript [ l ] [l] [l] will denote the l t h l^{th} lth layer

Sizes

  • m m m : number of examples in the dataset
  • n x n_x nx : input size
  • n y n_y ny : output size
  • n h [ l ] n^{[l]}_h nh[l] : number of hidden unites of the l t h l^{th} lth layer
  • L L L : number of layers in teh network

Objects

  • X ∈ R n x × m X \in R^{n_x × m} XRnx×m : is the input matrix
  • x ( i ) ∈ R n x x^{(i)} \in R^{n_x} x(i)Rnx : is the i t h i^{th} ith example represented as a column vector
  • Y ∈ R n x × m Y \in R^{n_x × m} YRnx×m : is the label matrix
  • y ( i ) ∈ R n x y^{(i)} \in R^{n_x} y(i)Rnx : is the output label for the i t h i^{th} ith example
  • W
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值