1. 人体神经网络
上图为人体的神经网络,其工作原理:
- 外部刺激通过神经末梢,转化为电信号,转导到神经细胞(又叫神经元)。
- 无数神经元构成神经中枢。
- 神经中枢综合各种信号,做出判断。
- 人体根据神经中枢的指令,对外部刺激做出反应。
随着神经网络的发展,现在已经不再使用上面的示例解释目前的神经网络了。这是因为现在的神经网络有反向传播的过程,但这个在人体的神经网络是没有这个过程的。
2. 神经网络架构
上图为一个简单的神经网络,每个圆圈代表一个神经元。最左侧为输入层,该层的神经元成为输入单元,最右侧的为输出层,该层神经元为输出单元,中间的层统称为隐藏层,这些层的单元称为隐藏单元。该网络为3层神经网络(输入层不记入网络层数)。
下面根据几个简单的实例来看下神经网络的工作过程。但在此之前,需要先介绍下神经网络中常用的参数:
2.1 神经网络参数
General comments:
- superscript ( i ) (i) (i) will denote the i t h i^{th} ith training example while superscript [ l ] [l] [l] will denote the l t h l^{th} lth layer
Sizes
- m m m : number of examples in the dataset
- n x n_x nx : input size
- n y n_y ny : output size
- n h [ l ] n^{[l]}_h nh[l] : number of hidden unites of the l t h l^{th} lth layer
- L L L : number of layers in teh network
Objects
- X ∈ R n x × m X \in R^{n_x × m} X∈Rnx×m : is the input matrix
- x ( i ) ∈ R n x x^{(i)} \in R^{n_x} x(i)∈Rnx : is the i t h i^{th} ith example represented as a column vector
- Y ∈ R n x × m Y \in R^{n_x × m} Y∈Rnx×m : is the label matrix
- y ( i ) ∈ R n x y^{(i)} \in R^{n_x} y(i)∈Rnx : is the output label for the i t h i^{th} ith example
- W