第六章 非线性方程求解

第六章 非线性方程求解

6.1 二分法

过程

f ∈ C [ a , b ] f\in C[a,b] fC[a,b],且 [ a , b ] [a,b] [a,b]为有根区间,取中点 x 0 = a + b 2 x_0=\frac{a+b}{2} x0=2a+b

f ( a ) f ( x 0 ) > 0 f(a)f(x_0)>0 f(a)f(x0)>0,则取 a 1 = x 0 a_1=x_0 a1=x0

否则取 b 1 = x 0 b_1=x_0 b1=x0

6.2 迭代法

将方程改写为等价形式:
x = φ ( x ) x=\varphi(x)\\ x=φ(x)
根据上式构造迭代法
x k + 1 = φ ( x k ) x_{k+1}=\varphi(x_k) xk+1=φ(xk)
如果有 lim ⁡ k → ∞ x k = x ∗ \lim\limits_{k\rightarrow\infty}x_k=x^{*} klimxk=x,则 x ∗ x^* x为该方程的解

6.3 收敛性、阶

定理6.1

φ ∈ C [ a , b ] \varphi\in C[a,b] φC[a,b],如果对 ∀ x ∈ [ a , b ] 有 a ≤ φ ( x ) ≤ b \forall x \in [a,b]有a\leq \varphi(x) \leq b x[a,b]aφ(x)b,且存在常数 L ∈ ( 0 , 1 ) L\in (0,1) L(0,1)使
∣ φ ( x ) − φ ( y ) ∣ ≤ L ∣ x − y ∣ , ∀ x , y ∈ [ a , b ] |\varphi(x)-\varphi(y)|\leq L|x-y|,\forall x,y \in [a,b] φ(x)φ(y)Lxy,x,y[a,b]
φ \varphi φ在区间 [ a , b ] [a,b] [a,b]上存在唯一不动点 x ∗ x^{*} x,且由上述式子产生的迭代序列 x k {x_k} xk对任何 x 0 ∈ [ a , b ] x_0 \in [a,b] x0[a,b]收敛于 x ∗ x^{*} x,并有误差估计
∣ x k − x ∗ ∣ ≤ L k 1 − L ∣ x 1 − x 0 ∣ |x_k-x^*| \leq \frac{L^k}{1-L}|x_1-x_0| xkx1LLkx1x0
推论

φ ∈ C 1 [ a , b ] \varphi \in C^1[a,b] φC1[a,b],则定理中的条件式可以改成
max ⁡ a ≤ x ≤ b ∣ φ ′ ( x ) ∣ ≤ L < 1 \max\limits_{a\leq x \leq b}|\varphi^{\prime}(x)| \leq L < 1 axbmaxφ(x)L<1
定义6.1

φ \varphi φ在某区间 I I I有不动点 x ∗ x^{*} x,若存在 x ∗ x^* x的一个领域 S = { ∣ x − x ∗ ∣ < δ } ⊂ I S=\left\{|x-x^*|<\delta\right\}\subset I S={xx<δ}I,对 ∀ x 0 ∈ S \forall x_0 \in S x0S,迭代法生成的序列 { x k } ⊂ S \left\{x_k\right\}\subset S {xk}S,且收敛于 x ∗ x^{*} x,则称迭代序列局部收敛。

定理6.2

x ∗ x^{*} x φ \varphi φ的不动点, φ ′ ( x ) \varphi^{\prime}(x) φ(x) x ∗ x^{*} x的邻域 S S S连续,且 ∣ φ ′ ( x ∗ ) ∣ < 1 |\varphi^{\prime}(x^*)|<1 φ(x)<1,则迭代法局部收敛

定义6.2

设序列 { x k } \left\{x_k\right\} {xk}收敛于 x ∗ x^{*} x,记误差 ε k = x k − x ∗ \varepsilon_k=x_k-x^* εk=xkx,若存在实数 p ≥ 1 p\geq 1 p1 a > 0 a >0 a>0,使
lim ⁡ k → ∞ ∣ ε k + 1 ∣ ∣ ε k ∣ p = a \lim\limits_{k\rightarrow\infty}\frac{|\varepsilon_{k+1}|}{|\varepsilon_k|^p}=a klimεkpεk+1=a
则称序列 { x k } \left\{x_k\right\} {xk} p p p阶收敛的, a a a称为渐进误差常数,当 p = 1 p=1 p=1时, 0 < a < 1 0<a<1 0<a<1,称为线性收敛。 p = 2 p=2 p=2称为平方收敛

定理6.3

x ∗ x^{*} x φ \varphi φ的不动点,整数 p > 1 p>1 p>1 φ ( p ) ( x ) \varphi^{(p)}(x) φ(p)(x) x ∗ x^* x的邻域连续,且满足
φ ′ ( x ∗ ) = . . . = φ ( p − 1 ) ( x ∗ ) = 0 , 而 φ ( p ) ( x ∗ ) ≠ 0 \varphi^{\prime}(x^{*})=...=\varphi^{(p-1)}(x^{*})=0,而\varphi^{(p)}(x^{*}) \neq 0 φ(x)=...=φ(p1)(x)=0,φ(p)(x)=0
则有迭代法生成的序列 { x k } \left\{x_k\right\} {xk} x ∗ x^* x的邻域是 p p p阶收敛的,并有
lim ⁡ k → ∞ ε k + 1 ε k p = φ ( p ) ( x ∗ ) p ! \lim\limits_{k\rightarrow\infty}\frac{\varepsilon_{k+1}}{\varepsilon_{k}^p}=\frac{\varphi^{(p)}(x^*)}{p!} klimεkpεk+1=p!φ(p)(x)

6.4 Steffensen加速迭代法

思想来源

x ∗ = φ ( x ∗ ) x^{*}=\varphi(x^{*}) x=φ(x) φ \varphi φ的不动点,记 ε k = x k − x ∗ \varepsilon_k=x_k-x^* εk=xkx,利用中值定理有
ε k + 1 ε k = x k + 1 − x ∗ x k − x ∗ = φ ( x k ) − φ ( x ∗ ) x k − x ∗ = φ ′ ( ξ k ) \frac{\varepsilon_{k+1}}{\varepsilon_k}=\frac{x_{k+1}-x^*}{x_k-x^*}=\frac{\varphi(x_k)-\varphi(x^*)}{x_k-x^*}=\varphi^{\prime}(\xi_k) εkεk+1=xkxxk+1x=xkxφ(xk)φ(x)=φ(ξk)
ξ k \xi_k ξk x ∗ x^* x x k x_k xk之间,若 φ ′ ( x ) \varphi^{\prime}(x) φ(x)变化不大,设 φ ′ ( ξ k ) ≈ C \varphi^{\prime}(\xi_k)\thickapprox C φ(ξk)C,于是有
x k + 1 − x ∗ ≈ C ( x k − x ∗ ) x k + 2 − x ∗ ≈ C ( x k + 2 − x ∗ ) x_{k+1}-x^* \thickapprox C(x_k-x^*)\\ x_{k+2}-x^* \thickapprox C(x_{k+2}-x^*) xk+1xC(xkx)xk+2xC(xk+2x)
从上两式消去 C C C,则得
x k + 2 − x ∗ x k + 1 − x ∗ ≈ x k + 1 − x ∗ x k − x ∗ \frac{x_{k+2}-x^*}{x_{k+1}-x^*} \thickapprox \frac{x_{k+1}-x^*}{x_k-x^*} xk+1xxk+2xxkxxk+1x
解得
x ∗ = x k + 2 x k − x k 2 x k + 2 − 2 x k + 1 + x k = x k − ( x k + 1 − x k ) 2 x k + 2 − 2 x k + 1 + x k x^*=\frac{x_{k+2}x_k-x_k^2}{x_{k+2}-2x_{k+1}+x_k}=x_k-\frac{(x_{k+1}-x_k)^2}{x_{k+2}-2x_{k+1}+x_k} x=xk+22xk+1+xkxk+2xkxk2=xkxk+22xk+1+xk(xk+1xk)2

特性

局部收敛,二阶收敛

6.5 Newton 迭代法

思想来源

x ∗ x^* x,如果已知它的一个近似 x k x_k xk,可利用Taylor展开式求出 f ( x ) f(x) f(x) x k x_k xk附近的线性近似,即
f ( x ) = f ( x k ) + f ′ ( x k ) ( x − x k ) + f ′ ′ ( ξ ) 2 ( x − x k ) 2 f(x)=f(x_k)+f^{\prime}(x_k)(x-x_k)+\frac{f^{\prime\prime}(\xi)}{2}(x-x_k)^2 f(x)=f(xk)+f(xk)(xxk)+2f′′(ξ)(xxk)2
忽略余项,得到近似
f ( x ) ≈ f ( x k ) + f ′ ( x k ) ( x − x k ) = 0 f(x) \thickapprox f(x_k)+f^{\prime}(x_k)(x-x_k)=0 f(x)f(xk)+f(xk)(xxk)=0
f ′ ( x k ) ≠ 0 f^{\prime}(x_k) \neq 0 f(xk)=0,则 x = x k − f ( x k ) f ′ ( x k ) x = x_k - \frac{f(x_k)}{f^{\prime}(x_k)} x=xkf(xk)f(xk)

特性

局部收敛,二阶收敛

6.6 Newton下山法

将Newton迭代改为:
x k + 1 = x k − λ k f ( x k ) f ′ ( x k ) , k = 0 , 1 , . . . x_{k+1}=x_k-\lambda_k\frac{f(x_k)}{f^{\prime}(x_k)},k=0,1,... xk+1=xkλkf(xk)f(xk),k=0,1,...
其中 0 < λ k ≤ 1 0<\lambda_k \leq 1 0<λk1,称为下山因子。

选择 λ k \lambda_k λk使 ∣ f ( x k + 1 ) ∣ < ∣ f ( x k ) ∣ |f(x_{k+1})|<|f(x_k)| f(xk+1)<f(xk)

6.7 重根情形

f ′ ( x ∗ ) = 0 f^{\prime}(x^{*})=0 f(x)=0,且 x ∗ x^* x为方程的m重根。此时 f ( x ) = ( x − x ∗ ) m g ( x ) , g ( x ∗ ) ≠ 0 f(x)=(x-x^*)^mg(x),g(x^*)\neq 0 f(x)=(xx)mg(x)g(x)=0。将迭代函数改为
x k + 1 = x k − m f ( x k ) f ′ ( x ) x_{k+1}=x_k-m\frac{f(x_k)}{f^{\prime}(x)} xk+1=xkmf(x)f(xk)
具有二阶收敛

6.8 割线法

用割线斜率代替导数,即
f ′ ( x k ) = f ( x k ) − f ( x k − 1 ) x k − x k − 1 f^{\prime}(x_k)=\frac{f(x_k)-f(x_{k-1})}{x_k-x_{k-1}} f(xk)=xkxk1f(xk)f(xk1)
则有新的迭代法
x k + 1 = x k − f ( x k ) f ( x k ) − f ( x k − 1 ) ( x k − x k − 1 ) x_{k+1}=x_k - \frac{f(x_k)}{f(x_k)-f(x_{k-1})}(x_k-x_{k-1}) xk+1=xkf(xk)f(xk1)f(xk)(xkxk1)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值