复旦14考研机试真题(4)--Hanoi 塔--不超时解法

这篇博客探讨了汉诺塔问题的解决方案,特别是如何在不超过100次移动的情况下,仅输出最后100次移动的详细步骤。当金片数量n小于7时,可以通过递归直接求解;对于n大于等于7的情况,通过分析发现最后100步的移动与n=7的情况相同,以此优化算法避免高时间复杂度。
摘要由CSDN通过智能技术生成

题目:
Hanoi 塔问题是印度的一个古老的传说。开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64 个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。
请编写程序,把A 柱上的n 个金片,搬动到C 柱(中间可以使用B 柱),使得搬动的次数最少。输入金片的个数n(1<=n<=64),输出总搬动次数,以及最后100 次搬动。如果搬动次数小于等于100 则全部输出;每个搬动占一行,加上是这第几次搬动的数字以及”:”,格式见示例。
输入样例

2

输出样例

3
1:A->B
2:A->C
3:B->C

分析:思路参考了这篇博文链接.
不过上面博文中代码运行结果有误; 下面我再重新说一下思路;
首先汉诺塔问题,对于n个盘子,移动次数为2n-1(n>=1);
简单证明一下:
把n个盘子从A柱移动到C柱,可以分解为下面三个步骤
1:把A柱上面n-1个盘子移动到B柱
2:把A柱最下面的盘子移动到C柱上
3:把B柱上n-1个盘子移动到C柱上
所以有递推公式 f(n) = 2*f(n-1) + 1;
又因为f(1) = 1;所以有f(n) = 2n-1(n>=1);
其次,题目只要输出最后100次的移动路线,我们是不是要模拟出n个盘子移动的全部路线呢?
通过上面证明我们知道,如果要用递归的方式去模拟,时间复杂度是很恐怖的;
下面我们来思考是不是可以在不模拟全部路线的情况下,给出最后100步的路线:
如果n<7,直接用递归求出路线即可;
n>=7:
对于奇数比如n = 9;
1.先把上面8个盘子由A柱移动到B柱
2.把第九个盘子由A柱移动到C柱
3.把7个盘子从B柱移动到A柱
4.把第八个盘子由B柱移动到C柱
5.把7个盘子由A柱移动到C柱
可见,n=7是n=9的子问题,n=9的最后100步路线,和n=7的最后100步路线相同;
同理,对于偶数,最后一百步的路线和n=8的最后100步路线相同;
还有一个以为我们为啥要通过n=7来分割呢, 6不可以吗?
因为题目要求移动次数在100内全部输出啊,而f(6)=26-1=63<100,全部输出;f(7)=27-1 = 127>100,部分输出;所以用n=7来分割;

#include<iostream> 
#include<string>
using namespace std;
string ans[303];
string a[3
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值